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Abstract
Aim: Existing global models to predict standing biomass are based on trees charac-
terized by a single principal stem, well developed in height. However, their use in 
open woodlands and shrublands, characterized by multistemmed species with sub-
stantial crown development, generates a high level of uncertainty in biomass esti-
mates. This limitation led us to (a) develop global models of shrub individual 
aboveground biomass based on simple allometric variables, (b) to compare the fit of 
these models with existing global biomass models, and (c) to assess whether models 
fit change when bioclimatic variables are considered.
Location: Global.
Time period: Present.
Major taxa studied: 118 species of shrubs.
Methods: We compile a database of 3,243 individuals across 49 sites distributed 
worldwide. Including  stem basal diameter, height and crown diameter as predictor 
variables, we built potential models and compared their fit using generalized least 
squares. We used mixed effects models to determine if bioclimatic variables im-
proved the accuracy of biomass models.
Results: Although the most important variable in terms of predictive capacity was 
stem basal diameter, crown diameter significantly improved the models’ fit, followed 
by height. Four models were finally chosen, with the best model combining all these 
variables in the same equation [R2 = 0.930, root mean square error (RMSE) = 0.476]. 
Selected models performed as well as established global biomass models. Including 
the individual bioform significantly improved the models’ fit.
Main conclusions: Stem basal diameter, crown diameter and height measures could 
be combined to provide robust aboveground biomass (AGB) estimates of individual 
shrub species. Our study supplements well‐established models developed for trees, 
allowing more accurate biomass estimation of multistemmed woody individuals. We 
further provide tools for a methodological standardization of individual biomass 
quantification in these species. We expect these results contribute to improve the 
quality of biomass estimates across ecosystems, but also to generate methodological 
consensus on field biomass assessments in shrubs.
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1  | INTRODUC TION

Over recent decades, vegetation cover shifts due to land use changes 
have deeply affected the global carbon budget, representing c. 18% 
of the total carbon emissions globally (Le Quéré et al., 2018). In this 
context, carbon mitigation projects  intended to protect and enhance 
forest cover, and thus carbon sequestration, have gained attention 
[e.g., Reducing Emissions from Deforestation and Forest Degradation 
(REDD)]. Most of these projects have taken place in tropical ecosys-
tems and have been focused on tree species, particularly those with 
larger diameters, as they store large amounts of carbon (Lutz et al., 
2018; Saatchi et al., 2011; Slik et al., 2013). Nonetheless, open forests 
and woodlands have received less attention in carbon accounting mod-
els and mitigation projects. However, some of these ecosystems (e.g., 
semi‐arid ecosystems, mostly dominated by multistemmed trees and 
shrub species) have been recognized as drivers of global atmospheric 
CO2 level variations (Poulter et al., 2014), and are expected to increase 
in coverage due to global climate change by the end of the 21st century 
(Huang, Yu, Guan, Wang, & Guo, 2016). One of the large sources of un-
certainty in carbon stocks quantification is the lack of standard models 
to convert woody individual measurements into biomass estimations 
(Chave et al., 2005). Therefore, it is essential to gather ground‐based 
information on carbon stored in vegetation across different ecosys-
tems, especially in those where multistemmed trees and shrubs are a 
significant proportion of the total vegetation biomass, in order to im-
plement and improve global climate change mitigation projects.

Ground‐based estimates of aboveground biomass (AGB) are typ-
ically obtained by applying allometric models based on field mea-
surements of biometric data at individual level. At present, several 
well‐established global models use stem diameter at breast height 
(i.e., DBH, diameter at 1.3 m from the ground level) as an AGB pre-
dictor variable of tree individuals, which are often represented by a 
single stem, well developed in height (Brown, 1997; Chave et al., ). 
The choice of this biometric variable is based on the fact that DBH is 
relatively easy to obtain in the field (but see Paul et al., 2017) and has  
been shown to have good predictive capacity. Nevertheless, in both 
woodlands and open forests, where vegetation communities are 
dominated by multistemmed and/or small woody individuals, these 
generalized biomass models based on DBH do not fit accurately. 
This is because these woody species typically have a well‐developed 
crown, branching off at stem heights below 1.3 m (Vesk, Warton, 
& Westoby, 2004). For the purpose of this study, “shrubs” are all 
woody non‐climbing plants with multiple stems and/or small size 
that do not meet the tree definition criteria (i.e., a perennial woody 
plant with many secondary branches supported by a single main 
stem or trunk with clear apical dominance; Richardson & Rejmánek, 
2011). We use the term “shrub” in its broadest definition in order 

to use one unifying denomination. Paul et al. (2017) demonstrated 
the methodological limitation of using DBH, showing that AGB mod-
els based upon diameter tend to be less accurate for multistemmed 
woody individuals, mainly due to the lack of standardization in ac-
counting for the diameter of multistemmed individuals.

Plant dimensions reflecting crown morphology (i.e., height and 
crown diameters)  are more comprehensive AGB predictors of shrub 
species, as they define plant architecture better than diameter. 
Inclusion of these allometric variables would improve the fit of mod-
els used to quantify shrub AGB, representing alternative measures 
when stem diameter is difficult or unpractical to measure (Conti, 
Enrico, Casanoves, & Díaz, 2013; Hierro, Branch, Villarreal, & Clark, 
2000; Hofstad, 2005; Murray & Jacobson, 1982). The relevance of 
allometric tools including height and crown size to predict AGB has 
just recently started to be widely recognized, especially for trees 
(Feldpausch et al., 2012; Goodman, Phillips, & Baker, 2014; Jucker 
et al., 2017; Ploton et al., 2016). Wood density has also been doc-
umented as another important predictor of stand‐level biomass in 
tropical ecosystems (Chave et al., 2014), although its predictive po-
tential has been questioned, particularly for AGB models developed 
for temperate species for which wood density is typically less vari-
able (Swenson & Enquist, 2007).

Improving the fit of allometric models represents one of the most 
important steps in assessing AGB stocks (Chave et al., 2005; Skole, 
Samek, & Smalligan, 2011). Developing new generalized models for 
wide application depends on the availability of destructive sampling 
data, which are enormously time‐consuming and expensive to ac-
quire (Chave et al., 2014; Paul et al., 2016). Species‐specific models 
locally developed for shrub species across ecosystems provide ac-
curate AGB estimates (e.g., Conti et al., 2013; Hierro et al., 2000; 
Návar et al., 2004). However, their application outside the range of 
calibration, or in a different location, can generate significant biases 
(20–200%, e.g., Chave et al., 2014; Ishihara et al., 2015; Ketterings, 
Coe, Noordwijk, Ambagau, & Palm, 2001). The compilation of large 
databases from previous species‐ and site‐specific studies based on 
destructively sampled individuals could be effectively used to rep-
arametrize global allometric models, substantially improving global 
AGB estimations (e.g., Chave et al., 2014; Jucker et al., 2017; Paul 
et al., 2016; Vieilledent et al., 2012). Additionally, to fully test the 
applicability of global predictive biomass models based on allome-
tric variables, bioclimatic variables need to be considered, given the 
varying relationship between individual allometric variables (scaling 
relationships) across different regions and bioforms (Blanchard et al., 
2016). Therefore, it is imperative to assemble all the available infor-
mation to improve global biomass models.

We analysed a globally distributed database of direct‐harvest 
biomass of multistemmed and/or small woody species. The dataset 
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included 49 undisturbed vegetation and secondary forest sites, 
spanning a wide range of vegetation types, for a total of 3,243 
woody individuals belonging to 118 different shrub species. The 
following questions were addressed: (a) which are the best global 
AGB models developed for shrubs based on commonly used allome-
tric variables?; (b) how do our AGB models compare in performance 
with other globally fitted AGB models?; and (c) does the inclusion 
of different bioclimatic variables improve the prediction of AGB for 
shrubs? To the best of our knowledge, this work is the first compi-
lation of biomass data for shrub species across different ecosystem 
types around the world, and one of the first that attempts to make 
progress in overcoming issues related to modelling AGB in mul-
tistemmed and/or small woody individuals globally.

2  | MATERIAL S AND METHODS

2.1 | Database development

We compiled a database of published papers that developed AGB 
models using allometric variables as predictor variables. These 
models were developed based on destructively harvested woody 
individual plants considered within the definition of shrub detailed 
before.

To construct the database, we performed a search in Scopus 
and Google Scholar during the years 2016 and 2017 using the 
following English and Spanish search terms “(*mass OR biomasa 
OR weight OR peso) AND (shrub* OR arbusto* OR multistem* OR 
multitallo OR multi‐tallo) AND (allometr* OR alométrico* OR equa-
tion* OR ecuacion* OR ‘dimensional relationship*’ OR ‘relaciones 
dimensionales’)”. We identified 390 papers and examined whether 
they included the following measurements at individual plant level 
in order to be included in the database: total AGB; crown diame-
ters, their average, or crown area in order to estimate mean crown 
diameter (CD); individual height (H); and, if available, a measure 
of total stem diameter (basal diameter, measured below 30 cm 
stem height (BD); stem diameter at 30 cm height (D30) and/or 
DBH). We excluded data from individuals explicitly sampled after 
regrowth. In the case of multistemmed individuals, the measured 
stem diameter had to represent the total basal area at a specified 
stem height. In general, the most common stem diameters sam-
pled in shrubs were basal diameter (below 30 cm stem height: D5, 
D10, D20 or not exactly defined), diameter at 30 cm, diameter of 
the longest stem and diameter at breast height. Some studies re-
ported the sum of all stem diameters, while others did not report 
how multiple stems were dealt with in diameter estimation. This is 
why we decided to obtain a standardized basal stem diameter es-
timation (BDest) based on the different stem diameters compiled 
(see Supporting Information Figure S1) to maximize the number of 
included harvested individuals, but at the expense of increasing 
the model’s biases. More accurate estimations of AGB are possi-
ble by precisely defining the basal stem height at the diameter at 
which it is sampled. This would certainly generate more precise 
predictions than those that were obtained here.

After the selection and filtering processes we finally retained 
35 articles that were used to construct the database (see details 
in Supporting Information Table S1). When data were solely dis-
played in figures, we used a data extraction software (Tummers, 
2006). When data were not publicly available, the dataset asso-
ciated with the published reference was requested from the au-
thors. More detailed information about the database compilation, 
analysis and screening are in Supporting Information Text S1.

Wood density (the oven‐dry wood mass divided by its green 
volume, and denoted as ρ, g/cm3) of the sampled species was also 
included. If ρ for a given species was reported in the original study, 
we included that value. Otherwise, we assumed the mean value for 
the species reported in the global wood density database (Chave et 
al., 2009), as well as in other references (see Supporting Information 
Table S2 for details).

To test if model parameters change under particular biocli-
matic conditions, we included the species’ bioform, as well as the 
corresponding biome and the global aridity index (GAI) category 
for the study site. We subcategorized shrub species’ bioforms as 
mangroves, subshrubs, shrubs (i.e., small size woody individuals 
typically multistemmed) and “shrubs sometimes small trees” (SST) 
(i.e., medium sized woody plants, with variable architecture from 
multistemmed to single‐stemmed) (Zizka, Govender, & Higgins, 
2014). This categorization followed the authors’ description of the 
species and the available information on local floras or digital re-
positories (see specific references in Supporting Information Text 
S1). Taxonomic information for each species was carefully checked 
for consistency using The Plant List (http://www.theplantlist.org/). 
Each individual shrub in the database was assigned to one of six 
biome types based on its geographic location: “Tropical & sub-
tropical forests & shrublands”; “Temperate coniferous forests”; 
“Temperate mixed forests”; “Savannas, woodlands & Mediterranean 
forests”; “Grasslands & shrublands” or “Deserts & xeric shrublands” 
[classification adapted from Olson et al. (2001)]. The location of 
each study site was georeferenced and used to obtain environmen-
tal data. We chose the GAI as an index summarizing mean annual 
precipitation (MAP) and mean annual potential evapotranspiration 
(MAE) (GAI = MAP/MAE). We defined different regions according 
to the following GAI categories as follows: GAI < 0.03, Hyper Arid; 
GAI between 0.03 and 0.2, Arid; GAI between 0.2 and 0.5, Semi‐
Arid; GAI between 0.5 and 0.65, Dry sub‐humid; and GAI > 0.65, 
Humid (Middleton & Thomas, 1992).

A first overview of the database showed that it included 49 
study sites (Figure 1a), from published and unpublished sources, 
for a total of 3,243 harvested shrub individuals, belonging to 118 
species and 35 families (see Supporting Information Table S2), 
spanning a wide range of woody shrub sizes (BD: 0.5–41.74 cm; 
H: 0.2–20.76 m; CD: 0.2–13.02 m; AGB: 0.01–926.30 kg, ρ: 0.38–
1.07 g/cm3). The database sites were distributed along different 
combinations of temperature and precipitation, but with a stron-
ger representation under 1,000 mm MAP and semi‐arid sites 
(GAI between 0.2 and 0.5) (Figure 1b,d). “Savannas, woodlands 
& Mediterranean forests” were the most represented biome type 

http://www.theplantlist.org/
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(Figure 1b), while most individuals fell within the SST bioform cat-
egory (Figure 1c).

2.2 | Statistical analysis

2.2.1 | Developing a global shrub species 
aboveground model

Allometric model construction was based on regressing AGB as a 
dependent variable against one or several independent variables. 
The independent variables considered were stem basal diameter 
(BD or BDest, cm), tree height (H, m), mean crown diameter (CD, m) 
and wood density (ρ). First, we fitted a log‐log model relating AGB 
to each individual allometric variable separately to explore which 
was the best AGB predictor. The tested log‐log models had the fol-
lowing mathematical form (in the simplest version):

where X refers to the putative independent variables, α and β are 
model parameters, and ε is an error term.

For practical use, estimated biomass predictions computed using 
a log‐log model must be back‐transformed to the original, plant‐
biomass scale. Because this transformation is nonlinear, and there 
is variability in the observed data around the fitted relationship, a 
simple exponential‐based transformation (a “naïve” transformation) 
would generate bias (Baskerville, 1972; Clifford, Cressie, England, 
Roxburgh, & Paul, 2013). Consequently, correction factors are typi-
cally calculated to remove this bias when back‐transforming. Clifford 
et al. (2013) reviewed this issue and provided routines to implement 
those corrections. We tested the naïve version together with the 
recommended correction factors [El‐Shaarawi‐Viveros estimator 

(1)AGB = exp
(

�+�i ln
(

Xi

)

+�
)

F I G U R E  1  Overview of the allometric database. Panel (a) shows the geographic location of the included sites, and (b) the distribution of 
these sites considering their mean annual precipitation and temperature among forest types. Circle sizes reflect the number of individuals 
measured at each location. Panels (c) and (d) show violin plots of the distribution in terms of individual aboveground dry biomass across 
bioforms and the global aridity index categories, respectively. In the case of bioform, 157 individuals were excluded because their bioform 
was not reported in the source study. SST = shrubs sometimes small trees

0

(a) (b)

(c) (d)
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(EV) and the minimum bias estimator (MB) from El‐Shaarawi and 
Viveros (1997) and Shen and Zhu (2008), respectively] and the tradi-
tional correction factor (restricted maximum likelihood, REML) pro-
posed by Baskerville (1972) across our dataset.

We built several models including all allometric predictor vari-
ables in all possible combinations and compared the fit of the 
models obtained using generalized least squares (GLS). To carry 
out these analyses the total database was randomly divided into 
a training dataset (n = 2,919, 90% of the data) and a fitting data-
set (n = 324, 10% of the data). The fitting dataset was exclusively 
used to evaluate our models’ performance and to compare with 
other published models. The distributions across both training and 
fitting datasets of the bioclimatic variables considered are shown 
in Supporting Information Figure S2. For the training dataset, we 
first cleaned all missing values for the included variables to gener-
ate a complete subset of data without blanks (n = 1,444), in order 
to obtain comparable statistical descriptors between the devel-
oped models, and to run model selection. The preferred statistical 
model was selected according to the Akaike information criterion 
(AIC), a likelihood criterion that penalizes the number of parame-
ters (Burnham & Anderson, 2002); the coefficient of determina-
tion (R2); and the root mean square error (RMSE), calculated as:

where AGBobs is the observed AGB and AGBest is the estimated AGB. 
We used the GLS procedure using the maximum likelihood (ML) 
method to obtain the model’s AIC and then, using the REML method, 
we computed R2 and RMSE.

After selecting the best statistical models, we reparametrized 
the models using the complete analysis dataset to include all data 
points available for each particular model, given that different al-
lometric variables had different sample sizes. Then, for each final 
model we reported the number of individuals used to obtain their 
particular parameters.

2.2.2 | Testing established allometric models

We used the fitting dataset to compare the performance of the final 
selected models together with already existing and well‐established 
global models in predicting the individual AGB. The already pub-
lished global models selected were:
1.	 The one proposed by Chave et al. (2014) using DBH, H and 

ρ as predictive variables for pantropical trees,

2.	 A global tree model proposed by Jucker et al. (2017) for an-
giosperms, using H and CD as predictive variables,

3a. The shrubs and small trees model (“SHRUB” model)

3b. The multistemmed tree model (“MULTI” model),

with both 3a and 3b developed by Paul et al. (2016) based only upon 
stem diameter at 10 cm height (D10) at the Australian continental 
scale.

As Chave et al.’s model required DBH as an input variable, the final 
training subset was reduced to 122 individuals containing all the vari-
ables required by all models, using the original DBH value recorded 
(without conversion). We compared the RMSE of each model (from 
the observed versus predicted AGB relationship) to have a general 
approximation of the behaviour of particular models. Furthermore, 
we calculated the average relative systematic error of model predic-
tions (or bias, in %) using the biomass data without log‐transformation 
(Chave et al., 2005; Jucker et al., 2017), as shown below:

All model comparisons were performed using their back‐trans-
formed versions to estimate AGB from the fitting dataset. In some 
cases, we then log‐transformed data to facilitate graphical comparisons.

2.2.3 | Testing the effect of bioclimatic variables on 
models’ performance

The models developed so far considered the complete dataset with-
out accounting for climatic and ecological differences, assuming that 
scaling relationships between BD, H and CD are invariant across 
zones with varying hydrological balance, biomes, or distinctive bio-
forms. To determine if these variables improved the accuracy of the 
four proposed biomass models, we used mixed effects models to an-
alyse if their parameters vary as a function of these variables. To that 
end, the relationship between AGB and the independent variables 
(e.g., BD, H, CD) for each case was allowed to vary among bioforms, 
biomes and GAI categories (random intercepts and slope model, only 
random intercept, and only random slope). We could not analyse if 
these variables also interact between one another (nested analysis), 
as not all bioforms were represented in all biomes and climatic con-
ditions, resulting in a very unbalanced model. The final models were 
compared with each original model, to evaluate if the inclusion of 
bioclimatic variables improved the fit of the models.

All statistical analyses were performed using R statistical soft-
ware version 3.4.0 (R Core Team, 2017). Climatic data extraction was 
carried out using the extract function from the “raster” package in 
R (Hijmans & van Etten, 2017). Model comparisons and mixed ef-
fect models were performed using the “nlme”, “lme4”, “bbmle” and 
“MuMIn” packages (Barton, 2016; Bates, Mächler, Bolker, & Walker, 
2014; Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2017).

(2)RMSE=

√

√

√

√
1

N

N
∑

i=1

(

AGBobs−AGBest

)2

(3)AGBest=0.0673
(

�×DBH
2
×H

)0.976

(4)AGBest=0.016
(

(

H×CD
)2.013

)

e
0.2042

2 ,

(5)AGBest=e
(2.428 lnD10)−3.007×1.128

(6)AGBest=e
(2.474 lnD10)−2.757×1.0787

(7)Bias=
1

N

N
∑

i=1

(

AGBest−AGBobs

AGBobs

)

100
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3  | RESULTS

3.1 | Developing a global shrub species 
aboveground model

Preliminary analyses using only single predictor variables (i.e., 
BD, H and CD) to explore which of them better explained AGB 
variability showed BD as the best single predictor (Figure 2a). CD 
also showed a good fit (Figure 2b), with greater predictive power 
than H, which showed a comparatively poorer fit when used as a 
single predictive variable of AGB, with a larger dispersion than BD 
and CD (Figure 2c).

The analysis to find the best predictive model of AGB showed 
that, in general, models including BD had the highest predictive ca-
pacity. Even when BD was the only predictive variable in the model, 
goodness of fit was superior to any other model including all the 
remaining variables. However, the inclusion of other allometric vari-
ables (particularly CD, but also H) significantly improved the fit of 

the models (Figure 3). When BD was not included as a predictive 
variable, the model based on CD and H had the best fit, but with 
significantly lower predictive capacity (Table 1). Finally, the inclusion 
of ρ slightly improved the fit of the proposed models (see statistical 
descriptors in Supporting Information Table S3).

We selected four final best‐performing models for predicting 
shrub AGB (Table 1) according to the fit of the models and the num-
ber of variables included. The best AGB model included BD, CD and 
H as independent variables (Model 1):

The results showed that Model 1 tended to overestimate AGBest 
at lower observed AGB values, showing an average relative error 
of +33% for shrubs weighing less than 10 kg (Figure 4a). At higher 
AGB values the mean error was reduced (Figure 4b). Comparison of 
models fits (Supporting Information Figure S3) showed that Model 1 
and Model 2 had similar average systematic bias (−0.96 and −0.16%, 

(8)AGBest=e(−2.281+1.525 Ln (BD)+0.831 Ln (CD)+0.523 Ln (H))

F I G U R E  2  Regression analysis between dry aboveground biomass of woody shrub individuals (AGB, kg) and allometric variables: (a) 
stem basal diameter (BD, cm), (b) height (H, m) and (c) mean crown diameter (CD, m). Statistical descriptors were obtained based on the same 
number of individuals for all models (n = 1,444). After obtaining comparable statistical descriptors, each model was rerun using the maximum 
number of individuals available for each variable (BD, n = 1,933; CD, n = 2,620; H, n = 2,877). Each dot represents an individual shrub. The 
fitted model is represented by the dashed line. RMSE = root mean square standard error; AIC = Akaike information criterion

(a) (b)

(c)
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respectively) but Model 1 had a better general fit in terms of AIC, 
R2 and RMSE, although it included one variable more than Model 
2. Model 3 had also good fit, considering that includes a single pre-
dictive variable, with an average systematic bias of −8.14%. Finally, 
Model 4 including CD and H, but not BD, had the lowest predictive 
capacity within the proposed models (average systematic bias of 
+12.9%).

Surprisingly, when comparing bias between predicted and ob-
served values obtained for each model after applying the REML, 
MB and EV correction factors, together with the naive estimate, 
the latter gave the lowest bias in all cases but for Model 4. Only for 
this case, the application of the REML correction factor reduced the 
model RMSE (see details in Supporting Information Figure S4). We 
retained the simplest version of each of the selected models, and 
computed the REML correction factor only for the reported version 
of Model 4.

3.2 | Testing established allometric models

Model 1 (Equation 8) and Chave et al.’s model (Equation 3) were 
the best fitted models (Figure 5 and Supporting Information Figure 
S5a,b). However, Chave et al.’s model presented the lowest RMSE 
and average systematic bias (+1.5%) , while Model 1 comparatively 
showed a higher RMSE and average systematic bias (+10.4%). Across 
this comparison, both Paul et al.’s models (Equations 5 and 6), based 
on BD only, had higher RMSE than Model 1 and Model 2. Equation 
6 (MULTI) fitted the data better than Equation 5 (SHRUB), which 
showed a higher underestimation of observed AGB (average system-
atic bias of +7.3% for MULTI versus +21.0% for SHRUB). The com-
parison of Paul et al.’s models with Model 3, also based on BD only, 
showed that Model 3 had an intermediate fit between the MULTI 
and SHRUB models in terms of RMSE (0.591) and average system-
atic bias (+13.7%) (Supporting Information Figure S5c,d). Finally, the 
model proposed by Jucker et al. (2017) (Equation 4), including only 
H and CD, showed the poorest performance across models. This 
model presented the highest RMSE and average systematic bias (in 
absolute terms; −67.3%), with a general underestimation of observed 
values (Figure 5). When Jucker et al.’s model was compared to Model 
4 based on the same variables (CD and H), Model 4 performed bet-
ter in terms of RMSE (0.653) and average systematic bias (+53.3%) 
(Supporting Information Figure S5e,f).

3.3 | Testing the effect of bioclimatic variables on 
models’ performance

The models’ parameters changed significantly in response to the in-
clusion of bioclimatic variables (Table 2). However, for Model 1, and 
Model 4 only in the case of bioform, model performance was consid-
erably increased in terms of AIC and RMSE. For example, the inclu-
sion of the variable bioform in Model 1 decreased AIC and RMSE 
by 17 and 7.3%, respectively, whereas the inclusion of biome or GAI 
reduced AIC and RMSE by no more than 5%. The pattern was main-
tained across the four proposed models with bioform as the vari-
able that most increased model performance according to the AIC 
criteria. However, for the case of Models 2 and 3, AIC reduction was 

F I G U R E  3  Effect of including different allometric variables on 
the root mean square error (RMSE) of global shrub biomass models. 
BD = stem basal diameter; BD + CD = stem basal diameter + 
mean crown diameter; BD + CD + H = stem basal diameter + mean 
crown diameter + height; BD + CD + H + ρ = stem basal diameter 
+  mean crown diameter + height + wood density. The order of 
inclusion of the allometric variables followed their comparative 
goodness of fit. Values in parentheses are the RMSE for each 
particular model

Models Parameters R2 RMSE AIC

Model 1 AGBest = exp(−2.281 + 1.525 Ln (BD) + 
0.831 Ln (CD) + 0.523 Ln (H))

0.930 0.476 1,966

Model 2 AGBest = exp(−2.057 + 1.741 Ln (BD) + 
0.945 Ln (CD))

0.913 0.531 2,278

Model 3 AGBest = exp(−2.869 + 2.584 Ln (BD)) 0.880 0.625 2,745

Model 4 AGBest = exp(−0.370 + 1.903 Ln (CD) + 
0.652 Ln (H))*1.403

0.859 0.677 2,979

Note. AGBest = estimated aboveground dry biomass (kg); BD = stem basal diameter (cm); H = height 
(cm); CD = mean crown diameter (m); R2 = coefficient of determination; RMSE = root mean square 
error; AIC = Akaike information criterion. All regression analyses were statistically significant 
(p < 0.0001). Statistical descriptors were obtained considering the same number of individuals 
(n = 1,444) for comparison. After obtaining statistical descriptors, model coefficients were recalcu-
lated using the maximum number of individuals available for each case: Model 1, n = 1633; Model 2, 
n = 1658; Model 3, n = 1933 and Model 4, n = 2,578.

TA B L E  1  Comparison of shrub 
aboveground biomass regression models
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also higher when both biome (AIC decreased by 11.2 and 15.5% for 
Models 2 and 3, respectively) and GAI (AIC decreased by 9.4 and 
14%, for Models 2 and 3, respectively) were included. Supporting 
Information Tables S5 to S8 show the results for all remaining models.

4  | DISCUSSION

By analysing a worldwide dataset of 3,243 woody individuals, we 
developed four different global models to estimate shrub AGB 

biomass, considering a combination of the most frequently sampled 
allometric variables (BD, CD and H). Our work supports the effec-
tiveness of generic biomass allometric models developed from large 
datasets for shrub species, consistent with comparable models de-
veloped for trees and multistemmed woody individuals across forest 
ecosystems (Chave et al., ; Jucker et al., 2017; Paul et al., 2016). The 
research presented here has the added value of presenting alterna-
tive models for those cases where stem diameter is difficult, or even 
impossible, to obtain in the field, a very common situation in the case 
of multistemmed woody individuals. Furthermore, we found that the 

F I G U R E  4  Goodness of fit for Model 1 based on multiple allometric variables [stem basal diameter (BD), height (H), mean crown diameter 
(CD)] for predicting the aboveground biomass of shrub individuals. (a) Predicted and observed aboveground biomass (AGB) values; the 
dashed line corresponds to a 1:1 relationship. Each dot represents a woody individual. (b) Mean relative error [Error = (AGBest – AGBobs/
AGBobs) × 100] for different AGB classes, with the bars delimiting the interquartile range (boxes) and 95% limits (dotted lines) of the errors. 
Note that when the predicted value is greater than the observed value, overestimation occurs and the error is positive; conversely, negative 
error values represent underestimation. Pink points represent the mean error for each AGB class. Total number of AGB values was divided 
into classes of the same length, where each number shown on the AGB axis is representative of the initial AGB value for each class. RMSE = 
root mean square error; AIC = Akaike information criterion

(a) (b)

F I G U R E  5  Comparison of models’ performances using the fitting dataset. (a) Predicted and observed aboveground biomass (AGB) values 
for the selected models. (b) Mean relative errors [Error = (AGBest − AGBobs/AGBobs) × 100] for the compared models across the observed 
aboveground biomass values. The compared models correspond to Model 1 proposed here; the global model proposed by Chave et al. (2014), 
including diameter at breast height (DBH), height (H) and wood density (ρ); the model proposed by Jucker et al. (2017) for angiosperms 
including mean crown diameter (CD) and H; and the shrub models proposed by Paul et al. (2016) using stem diameter at 10 cm height (D10) 
as a main variable (MULTI and SHRUB models). RMSE = root mean square error; Bias = average relative systematic error of model predictions

(a) (b)
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fitness of the models was improved by including bioclimatic varia-
bles, showing that scaling relationships differed mainly for different 
bioforms. However, the original models still fit the data satisfactorily 
and their use is simpler and more practical. Here, we discuss several 
aspects that arise from the results that need to be considered to use 
these models for accurate estimation of individual AGB across shrub 
species and ecosystems.

4.1 | Developing a global shrub species 
aboveground model

Substantial work has been dedicated to develop species‐ and site‐
specific models for shrub species worldwide, encompassing a huge 
range of species and environments including subtropical forests of 
Mexico, the USA, Canada (e.g., Alaback, 1986; Ludwig, Reynolds, & 
Whitson, 1975; Murray & Jacobson, 1982; Návar et al., 2004), China 
(Zeng, Liu, Feng, & Ma, 2010) and South America (Conti et al., 2013; 
Haase & Haase, 1995; Hierro et al., 2000; Sampaio, 2005); European 
Mediterranean shrublands (Paton, Nuñez, Bao, & Muñoz, 2002); and 
the Patagonian steppe (Oñatibia, Aguiar, Cipriotti, & Troiano, 2010), 
among others. The variables tested were seldom other than stem di-
ameter‐related variables, crown‐related variables and height, all with 
good fits. These local studies represent enormous efforts to improve 
biomass models to include these woody species in local and global 
carbon budgets. However, these models are mostly species‐specific 
and rely on a low number of individuals (typically < 100), which limits 
application to the local scale or to a few species. Approaches aimed 
to develop a global biomass model based on a relatively large sample 

size (>1,000) have the added value of greatly reducing uncertainty 
in parameter estimates, as already shown by models developed for 
trees around the world (i.e., Chave et al., 2004; Jucker et al., 2017; 
Roxburgh, Paul, Clifford, England, & Raison, 2015). For the case of 
shrubs, to our knowledge, only Paul et al. (2016) have compiled a 
huge dataset across several functional types at continental level in 
Australia, including multistemmed shrubs and small trees, and using 
stem diameter, H and ρ as the main predictor variables. The analysis 
presented in Paul et al. (2016) showed that AGB prediction based 
only on BD, or even including H and ρ, tended to be less accurate 
for multistemmed shrubs in comparison with trees. The authors ex-
plained this low model fit by the problems associated with diameter 
sampling across species belonging to the former (Paul et al., 2017). 
Our work went further by compiling a global dataset of shrub indi-
viduals, including not only BD, H and ρ, but also CD, as predictor vari-
ables of a global shrub biomass model with potential wide application 
across different phytogeographic regions and climatic conditions.

Stem diameter seems to be the best single predictive variable of 
biomass across woody individuals, as found by other studies (Brown, 
1997; Chave et al., 2005; Paul et al., 2016). However, accurate field 
measurement of shrub BD can be demanding, particularly in highly 
branched or spiny species where stem diameter measurement is dif-
ficult, slow and also dangerous due to exposure to potential haz-
ards, often resulting in inaccurate measures as the operator needs 
to physically crawl or bend to get close access to the stem (Paul et 
al., 2017). In such cases, an alternative model without BD (Model 4) 
is needed to accurately estimate AGB, even if there is a goodness of 
fit trade‐off.

Models AIC RMSE AIC change (%) RMSE change (%)

Model 1 1,966 0.476    

Model 1 + bioform 1,631 0.441 17.04 7.35

Model 1 + biome 1,875 0.452 4.63 5.04

Model 1 + GAI 1,881 0.457 4.32 3.99

Model 2 2,278 0.531    

Model 2 + bioform 1,912 0.493 16.07 7.16

Model 2 + biome 2,022 0.477 11.24 10.17

Model 2 + GAI 2,064 0.485 9.39 8.66

Model 3 2,745 0.625    

Model 3 + bioform 2,235 0.558 18.58 10.72

Model 3 + biome 2,319 0.530 15.52 15.20

Model 3 + GAI 2,360 0.538 14.03 13.92

Model 4 2,979 0.677    

Model 4 + bioform 2,492 0.614 16.35 9.31

Model 4 + biome 2,882 0.647 3.26 4.43

Model 4 + GAI 2,967 0.668 0.40 1.33

Note. AIC = Akaike information criterion; RMSE = root mean square error; GAI = global aridity index. 
Values in bold represent changes >5%. Statistical descriptors were obtained considering the same 
number of individuals (n = 1,444) for comparison. Mixed models including random intercept and 
slope had the best fit in all cases, except for Model 4 for which mixed model including random slope 
but fixed intercept had the best fit for the case of bioform.

TA B L E  2  Absolute change (%) in the 
predictive capacity  of models after 
including different bioclimatic variables
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In agreement with Goodman et al. (2014) and Jucker et al. (2017) 
our results indicate that AGB models incorporating a crown‐re-
lated variable have significantly improved predictive power, even 
more so than including height and wood density (Figure 3). The 
crown represents a relatively higher amount of biomass in shrubs 
than in trees, in which the main stem accounts for the major pro-
portion of biomass, and this is probably why this variable markedly 
increased the predictive power of shrub AGB models (a RMSE re-
duction of 15%), followed by H (an additional RMSE reduction of 
10%) and lastly by ρ (other additional RMSE reduction of 1.5%). 
Although the inclusion of several variables could be impractical l 
for field sampling, our study showed that it is difficult to capture 
the volume occupied by a multistemmed individual with only one 
variable (or dimension).

Our models did not improve significantly after including ρ, in 
contrast with what was found by other authors for tree models 
(Chave et al., 2005, 2014). A potential explanation of this pattern 
could be related to the level of sampling (measurement error) as 
was also suggested by Paul et al. (2016), given that species’ ρ val-
ues were obtained from databases rather than at the individual 
level. There is accumulated evidence that ρ varies as a function 
of height, ramification degree and age (Chave et al., 2009). Hence, 
database‐derived ρ values could increase variability, rather than 
reduce it. It could be interesting to test if reducing this method-
ological bias could significantly improve the predictive power of 
biomass models.

4.2 | Practical field considerations in order to 
accurately estimate shrub biomass

Much work has been devoted to discussing how to adequately es-
timate individual AGB in trees (Brown, 1997; Chave et al., 2014; 
Feldpausch et al., 2012; Ketterings et al., 2001; Ploton et al., 
2016). On the contrary, protocols for shrubs are not well devel-
oped (but see Chojnacky & Milton, 2008). In the quest to establish 
general recommendations for assessing shrub individual biomass, 
our results revealed that any measure of the total basal area of an 
individual is by far the best proxy of its total AGB. This coincides 
with the findings of Haase and Haase (1995). However, measuring 
stem diameter in shrubs can be problematic when individuals ram-
ify from the base. In these cases, its field measurement can add 
uncertainty and bring about huge methodological errors. Through 
the analysis of the database used here,  we detected that the deci-
sion on how to sample shrub stem diameter was entirely up to the 
researcher. There was no methodological standardization on what 
to do in the case of multistemmed individuals, which often have 
more than 20 ramifications from the base. To develop our models 
we chose to consider as BD any stem diameter sampled above the 
root collar and below 30 cm of stem height. This decision allowed 
us to include more studies and simplified the standardization pro-
cedure. However, to reduce the amount of noise introduced into 
collated datasets, we recognize the need to standardize the height 
selected to measure the stem diameter. We therefore recommend 

sampling the stem diameter at 10 cm stem height (D10), as pro-
posed by Paul et al. (2016). If ramifications exist below this level, 
then we recommend also recording their diameters (Di) to obtain a 
single value of basal stem diameter (BD) representing all basal area 
at this height, calculated as follows:

Paul et al. (2016) also presented simple equations to convert 
measures of D0, D30, D50 and D130 to D10 that we include in 
Supporting Information Table S4 to have a complete standardized 
protocol to recommend. Improved accuracy of the models being de-
veloped could be achieved if more rigor is applied to the height of 
stem diameter measurement required to derive BD.

Even though stem diameter measures could be standardized 
across protocols and studies, sometimes it can be impossible to 
sample this variable in the field. Measuring crown diameter has 
then the advantage of being relatively easy to sample in the field for 
small‐ and medium‐sized shrub individuals (Northup, Zitzer, Archer, 
McMurtry, & Boutton, 2005) without methodological constraints. 
To assess average crown diameter in the field, we recommend mea-
suring the maximum crown diameter and its perpendicular diame-
ter with a metric tape, and then calculating their mean.

We found a large dispersion in shrub height values across our 
dataset, which could be related to methodological aspects that are 
not usually addressed. To have a comparable measure of height, it 
is important to know if it refers to the standing maximum height of 
the shrub crown, the total length of the highest branch as maximum 
height, or the apparent average maximum height of the crown. It is 
also important to know if height was measured using a metric tape, a 
telescopic stick, a laser rangefinder, a clinometer, or if it was visually 
estimated. In all, these methodological issues may introduce signifi-
cant bias when comparing different datasets, as shown here. However, 
the inclusion of height as a predictive variable in a biomass model, im-
proved its performance, as was also found for trees (Feldpausch et 
al., 2012). We recommend considering height as the shortest distance 
between the upper boundary of the main photosynthetic tissues of 
a plant and the ground level, expressed in metres and measured on 
the standing plant before harvest. For estimating the height of short 
shrubs, a metric tape can be used, but a telescopic stick with metre 
marks or a laser rangefinder could be useful for taller shrubs.

Several methodologies have been developed for estimating 
crown area, height and stem diameter from remote sensing (e.g., 
Barbier, Couteron, Proisy, Malhi, & Gastellu‐Etchegorry, 2010; 
Jucker et al., 2017), yet their calibration still relies on the accuracy 
of ground‐based biomass (Baccini et al., 2012; Saatchi et al., 2011; 
Le Toan et al., 2011). It is important to understand the uncertainty 
linked to the use of different methodologies in order to reduce po-
tential bias in the estimations.

Estimation of shrub biomass can be improved by considering 
plant dimensions other than diameter. However, the goal of develop-
ing and applying AGB allometric models is to enable site‐specific es-
timation of biomass based on plot measurements of plant individual 
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allometric variables (BD, CD and H). Given that site‐level sampling 
errors are often the largest source of error in these estimates (Paul 
et al., 2017), they are likely to be minimized by increasing sample 
size. Any decision on increasing the number of predictive variables 
should not be at the expense of reducing sample size. On the other 
hand, a generalized allometric model may be applied across multiple 
sites, but validation is important when an existing generic multispe-
cies model is applied to a species not represented within the existing 
model. According to Paul et al. (2018), there are no low‐cost (i.e., 
small N) options for such validation. In those cases, sampling inten-
sities of N > 50 individuals should be used to validate the existing 
model (Roxburgh et al., 2015), in such a way that even if the valida-
tion fails, the new dataset is sufficiently large to develop a new spe-
cies‐specific model. If the validation is successful, the new data may 
be combined with the existing dataset to provide a revised generic 
allometric model (Paul et al., 2018). All these decisions will definitely 
depend on the objective and the budget of the particular research 
project.

We developed models to estimate individual AGB of shrubs 
worldwide; however, we should mention that biomass estimates 
generally require both above‐  and belowground biomass. Paul et 
al. (2019) developed models to estimate individual belowground 
biomass of Australian shrubs and multistemmed trees, based on 
diameter at 10 cm stem height. This has to be considered when 
planning root biomass quantification based on aboveground allo-
metric predictive variables. Other studies have also estimated tree 
belowground biomass based on total AGB (Cairns, Brown, Helmer, 
& Baumgardner, 1997), and based on the joint variation of root to 
shoot ratios and DBH (Ledo et al., 2018). A standardized protocol for 
quantifying belowground biomass across distinct woody life‐forms 
and different ecosystems is also an imperative future step.

4.3 | Testing established allometric models

The four proposed models were compared with previously published 
and established biomass models for trees (Chave et al., 2014; Jucker 
et al., 2017) and small and/or multistemmed trees and shrubs (Paul 
et al., 2016). Our models had similar fit to that of the most used tree 
biomass model (Chave et al., 2014), even with a relatively lower sam-
ple size. We also showed that Chave et al.’s model had a good fit 
for shrubs, even when the fitting subset was in part (8.7%) out of 
the range of applicability of Chave et al.’s model, including some in-
dividuals with DBH < 5 cm. However, it is important to note that, 
although it is possible to use Chave et al.’s model to predict the bio-
mass of individual shrubs with good fit, this is only achievable if DBH 
can be effectively sampled on those individuals, which is unlikely for 
most multistemmed woody individuals. As an example, to carry out 
model comparison we had to reduce our fitting dataset by 62.3% in 
order to include only shrub individuals for which DBH was sampled.

Model 3 based only on BD also performed well in compari-
son to those proposed by Paul et al. (2016) based on the same 
variable. This is particularly true for Paul et al’s MULTI model 
based on a dataset with similar applicability range, but comprising 

a significantly greater number of individuals (N = 5,397), which 
explains its better performance in comparison with Model 3. 
However, Paul et al.’s SHRUB model yielded higher underesti-
mates for AGB > 10 kg in comparison with Model 3 and Paul et al.́ s 
MULTI model. Differences in the fit of these models can be ex-
plained mainly by the fact that Paul et al.’s SHRUB model consid-
ered individuals smaller than those included here (but our data are 
still within its range of applicability), which could produce higher 
bias for individuals less represented in their dataset (>10 kg). 
When comparing Model 4 with the model proposed by Jucker 
et al. (2017), also including H and CD as predictive variables, we 
found that our model performed better due to a consistent under-
estimation of Jucker et al.’s predicted values. Differences in model 
fit in this case could be mainly due to the different procedures 
used to fit biomass models (GLS in our models in comparison with 
data binning in Jucker et al.’s model).

In general, our models represent a well‐fitted set of shrub bio-
mass models, complementing well‐established and commonly used 
AGB tree models and spanning across diverse ecosystems unrep-
resented previously. They provide further evidence of the effec-
tiveness of generic biomass allometric models developed from 
large datasets, consistent with comparable models developed for 
trees across forest ecosystems. More accurate estimates of for-
est biomass and carbon results from the inclusion of small, mul-
tistemmed woody individuals, a biomass compartment previously 
underestimated. We further proposed an alternative model when 
BD cannot be adequately sampled, including CD as an important 
predictive variable, as well as H.

Depending on which allometric variable can be more precisely 
sampled at individual level, we suggest the following general proce-
dure when estimating AGB in woody ecosystems where no regional 
models exist and destructive sampling is unfeasible (see schematic 
protocol in Figure 6):

1.	 If DBH can be accurately sampled (e.g., tall woody individuals 
branching off at stem height >130 cm), apply Chave et al.’s 
(2014) tree model (Equation 3);

2.	 If DBH cannot be sampled adequately (e.g., woody individuals 
branching off below 130 cm but above 10 cm stem height), but 
BD and CD or H can be recorded, apply our proposed Models 1 or 
2 (Table 1);

3.	 If only BD (but not CD or H) can be sampled (e.g., woody individu-
als branching off below 130 cm but above 10 cm height, but with 
a very open canopy and twisted stems) apply Paul’s MULTI model 
(Equation 6). This option is also useful when researchers need to 
reduce the individual sampling effort to have a decreased site‐
level estimation error by increasing the number of sampled indi-
viduals (i.e., maximizing the accuracy‐to‐cost ratio by measuring 
more individuals rather than spending more time maximizing the 
accuracy at individual level).

4.	 Finally, if precise acquisition of BD is impossible and it is only pos-
sible to record CD and H (e.g., woody individuals branching off 
just above root collar), apply our proposed Model 4 (Table 1).
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4.4 | Including bioclimatic variables

A key requirement for developing more accurate allometric equa-
tions is to incorporate all of the appropriate variables that affect 
AGB, such as ρ, and the relationship between allometric variables 
subject to variation due to geographic constraints (Banin et al., 
2012; Goodman et al., 2014). Our database comprised different 
bioforms and sites distributed across different biomes and cli-
matic conditions, allowing us to test the hypothesis that changes 
in these scaling relationships could affect the predictive power of 
global biomass models. Results confirmed the fact that the scal-
ing relationship between the allometric variables used to estimate 
AGB did vary with different bioclimatic variables. However, only 
bioform significantly strengthened the model. These results agree 
with Paul et al. (2016) and Jucker et al. (2017), where the inclusion 
of site‐related factors (stand and climate characteristics) did not 
markedly improve the predictive ability of the allometric models, 
but the inclusion of plant architecture‐ or physiognomy‐type did. 
Varying bioforms or species’ architecture reflect different energy 
investment strategies likely to result in different crown–mass 
ratios among woody individuals with similar size (Ploton et al., 
2016). Across our models, the effects of other bioclimatic vari-
ables (biome and GAI) significantly improved model fits particu-
larly when height was not included in the model (Models 2 and 

3). Although not conclusive, this may indicate that different allo-
metric dimensions could be differentially limited across bioclimatic 
regions, and that accounting for more allometric variables may re-
duce this variation across sites, and so the associated uncertainty, 
as was found for trees (Blanchard et al., 2016). Future research 
is needed to explore the differences in shrubs’ scaling relation-
ships across varying bioclimatic conditions to accurately account 
for these differences. As a general conclusion, the inclusion of bio-
climatic variables, especially bioform, contributes to more accu-
rate estimates of individual shrub AGB. Despite this improvement, 
the original Model 1 remains strong enough on its own to be used 
across different bioforms, biomes and climatic regions, but deci-
sion on the final model used is at the discretion of the researcher.

In summary, information on stem basal diameter, crown diameter 
and height can be combined in different ways to provide a robust 
AGB estimate of individual shrubs, even more accurate than locally 
developed previous estimates. Our study supplements previous 
well‐established models developed for trees, allowing more accu-
rate biomass estimation of shrubs that are not usually accounted for 
when quantifying biomass and carbon stocks. We further provide 
tools for a methodological standardization of individual biomass 
quantification in shrub species worldwide. However, it is necessary 
to highlight that this method provides estimates—not direct mea-
surements—and model errors should always be carefully examined 

F I G U R E  6  Schematic protocol recommended for applying general aboveground biomass (AGB) models for woody individuals. (a)–(d) 
Different individual woody physiognomy types sampled in the field. For each case, we suggest measuring different sets of allometric 
variables in order to apply the recommended biomass models. DBH = diameter at 130 cm stem height (cm); BD = stem basal diameter (cm); 
CD = mean crown diameter (m); H = height (m); ρ = wood density (g/cm3); AGBest = estimated AGB. See detailed explanation in the main text

(a) (b) (c) (d)
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and analysed. With this work we expect not only to assist in improv-
ing the quality of biomass estimates across different ecosystems, but 
also to contribute to methodological consensus on field assessments 
of biomass in small and/or multistemmed woody species. This will 
benefit advancement towards a global mechanism to boost climate 
change mitigation projects.
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