1,273 research outputs found

    Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells

    Full text link
    We have shown experimentally that an electric field decreases the energy separation between the two components of a dense spin-polarized exciton gas in a coupled double quantum well, from a maximum splitting of 4\sim 4 meV to zero, at a field of \sim 35 kV/cm. This decrease, due to the field-induced deformation of the exciton wavefunction, is explained by an existing calculation of the change in the spin-dependent exciton-exciton interaction with the electron-hole separation. However, a new theory that considers the modification of screening with that separation is needed to account for the observed dependence on excitation power of the individual energies of the two exciton components.Comment: 5 pages, 4 eps figures, RevTeX, Physical Review Letters (in press

    Testing intermediate-age stellar evolution models with VLT photometry of LMC clusters. I. The data

    Get PDF
    This is the first of a series of three papers devoted to the calibration of a few parameters of crucial importance in the modeling of the evolution of intermediate-mass stars, with special attention to the amount of convective core overshoot. To this end we acquired deep V and R photometry for three globular clusters of the Large Magellanic Cloud (LMC), namely NGC 2173, SL 556 and NGC 2155, in the age interval 1-3 Gyr. In this first paper, we describe the aim of the project, the VLT observations and data reduction, and we make preliminary comparisons of the color-magnitude diagrams with both Padova and Yonsei-Yale isochrones. Two following papers in this series present the results of a detailed analysis of these data, independently carried out by members of the Yale and Padova stellar evolution groups. This allows us to compare both sets of models and discuss their main differences, as well as the systematic effects that they would have to the determination of the ages and metallicities of intermediate-age single stellar populations.Comment: 27 pages with 10 figures. Accepted by the Astronomical Journa

    Establishing research strategies, methodologies and technologies to link genomics and proteomics to seagrass productivity, community metabolism, and ecosystem carbon fluxes

    Get PDF
    A complete understanding of the mechanistic basis of marine ecosystem functioning is only possible through integrative and interdisciplinary research. This enables the prediction of change and possibly the mitigation of the consequences of anthropogenic impacts. One major aim of the European Cooperation in Science and Technology (COST) Action ES0609 “Seagrasses productivity. From genes to ecosystem management,” is the calibration and synthesis of various methods and the development of innovative techniques and protocols for studying seagrass ecosystems. During 10 days, 20 researchers representing a range of disciplines (molecular biology, physiology, botany, ecology, oceanography, and underwater acoustics) gathered at The Station de Recherches Sous-marines et Océanographiques (STARESO, Corsica) to study together the nearby Posidonia oceanica meadow. STARESO is located in an oligotrophic area classified as “pristine site” where environmental disturbances caused by anthropogenic pressure are exceptionally low. The healthy P. oceanica meadow, which grows in front of the research station, colonizes the sea bottom from the surface to 37 m depth. During the study, genomic and proteomic approaches were integrated with ecophysiological and physical approaches with the aim of understanding changes in seagrass productivity and metabolism at different depths and along daily cycles. In this paper we report details on the approaches utilized and we forecast the potential of the data that will come from this synergistic approach not only for P. oceanica but for seagrasses in general

    Generation of angular-momentum-dominated electron beams from a photoinjector

    Get PDF
    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam

    The CORALIE survey for southern extra-solar planets XV. Discovery of two eccentric planets orbiting HD4113 and HD156846

    Full text link
    We report the detection of two very eccentric planets orbiting HD4113 and HD156846 with the CORALIE Echelle spectrograph mounted on the 1.2-m Euler Swiss telescope at La Silla. The first planet, HD4113b, has minimum mass of msini=1.6±0.2MJupm\sin{i}=1.6\pm0.2 M_{\rm Jup}, a period of P=526.59±0.21P=526.59\pm0.21 days and an eccentricity of e=0.903±0.02e=0.903\pm0.02. It orbits a metal rich G5V star at a=1.28a=1.28 AU which displays an additional radial velocity drift of 28 m s1^{-1}/yr observed during 8 years. The combination of the radial-velocity data and the non-detection of any main sequence stellar companion in our high contrast images taken at the VLT with NACO/SDI, characterizes the companion as a probable brown dwarf or as a faint white dwarf. The second planet, \object{HD 156846 b}, has minimum mass of msini=10.45±0.05m\sin{i}=10.45\pm0.05 MJup_{\rm Jup}, a period of P=359.51±0.09P=359.51\pm0.09 days, an eccentricity of e=0.847±0.002e=0.847\pm0.002 and is located at a=1.0a=1.0 AU from its parent star. HD156846 is a metal rich G0 dwarf and is also the primary of a wide binary system (a>250a>250 AU, P>4000P>4000 years). Its stellar companion, \object{IDS 17147-1914 B}, is a M4 dwarf. The very high eccentricities of both planets can be explained by Kozai oscillations induced by the presence of a third object.Comment: 4 pages, 5 figures, A&A Letter accepte

    Hybrid stars with the color dielectric and the MIT bag models

    Full text link
    We study the hadron-quark phase transition in the interior of neutron stars (NS). For the hadronic sector, we use a microscopic equation of state (EOS) involving nucleons and hyperons derived within the Brueckner-Bethe-Goldstone many-body theory, with realistic two-body and three-body forces. For the description of quark matter, we employ both the MIT bag model with a density dependent bag constant, and the color dielectric model. We calculate the structure of NS interiors with the EOS comprising both phases, and we find that the NS maximum masses are never larger than 1.7 solar masses, no matter the model chosen for describing the pure quark phase.Comment: 11 pages, 5 figures, submitted to Phys. Rev.

    The Nucleon Spectral Function at Finite Temperature and the Onset of Superfluidity in Nuclear Matter

    Get PDF
    Nucleon selfenergies and spectral functions are calculated at the saturation density of symmetric nuclear matter at finite temperatures. In particular, the behaviour of these quantities at temperatures above and close to the critical temperature for the superfluid phase transition in nuclear matter is discussed. It is shown how the singularity in the thermodynamic T-matrix at the critical temperature for superfluidity (Thouless criterion) reflects in the selfenergy and correspondingly in the spectral function. The real part of the on-shell selfenergy (optical potential) shows an anomalous behaviour for momenta near the Fermi momentum and temperatures close to the critical temperature related to the pairing singularity in the imaginary part. For comparison the selfenergy derived from the K-matrix of Brueckner theory is also calculated. It is found, that there is no pairing singularity in the imaginary part of the selfenergy in this case, which is due to the neglect of hole-hole scattering in the K-matrix. From the selfenergy the spectral function and the occupation numbers for finite temperatures are calculated.Comment: LaTex, 23 pages, 21 PostScript figures included (uuencoded), uses prc.sty, aps.sty, revtex.sty, psfig.sty (last included
    corecore