399 research outputs found

    Evidence for Black Hole Growth in Local Analogs to Lyman Break Galaxies

    Full text link
    We have used XMM-Newton to observe six Lyman Break Analogs (LBAs): members of the rare population of local galaxies that have properties that are very similar to distant Lyman Break Galaxies. Our six targets were specifically selected because they have optical emission-line properties that are intermediate between starbursts and Type 2 (obscured) AGN. Our new X-ray data provide an important diagnostic of the presence of an AGN. We find X-ray luminosities of order 10^{42} erg/s and ratios of X-ray to far-IR luminosities that are higher than values in pure starburst galaxies by factors ranging from ~ 3 to 30. This strongly suggests the presence of an AGN in at least some of the galaxies. The ratios of the luminosities of the hard (2-10 keV) X-ray to [O III]\lambda 5007 emission-line are low by about an order-of-magnitude compared to Type 1 AGN, but are consistent with the broad range seen in Type 2 AGN. Either the AGN hard X-rays are significantly obscured or the [O III] emission is dominated by the starburst. We searched for an iron emission line at ~ 6.4 keV, which is a key feature of obscured AGN, but only detected emission at the ~ 2\sigma level. Finally, we find that the ratios of the mid-infrared (24\mu m) continuum to [O III]\lambda 5007 luminosities in these LBAs are higher than the values for Type 2 AGN by an average of 0.8 dex. Combining all these clues, we conclude that an AGN is likely to be present, but that the bolometric luminosity is produced primarily by an intense starburst. If these black holes are radiating at the Eddington limit, their masses would lie in the range of 10^5 to 10^6 M_{sun}. These objects may offer ideal local laboratories to investigate the processes by which black holes grew in the early universe.Comment: Accepted for publication in Ap

    The MUSE 3D view of feedback in a high-metallicity radio galaxy at z = 2.9

    Full text link
    We present a detailed study of the kinematic, chemical and excitation properties of the giant Lyα\alpha emitting nebula and the giant \ion{H}{I} absorber associated with the z=2.92z = 2.92 radio galaxy MRC 0943--242, using spectroscopic observations from VLT/MUSE, VLT/X-SHOOTER and other instruments. Together, these data provide a wide range of rest-frame wavelength (765 \AA\, -- 6378 \AA\, at z=2.92z = 2.92) and 2D spatial information. We find clear evidence for jet gas interactions affecting the kinematic properties of the nebula, with evidence for both outflows and inflows being induced by radio-mode feedback. We suggest that the regions of relatively lower ionization level, spatially correlated with the radio hotspots, may be due to localised compression of photoionized gas by the expanding radio source, thereby lowering the ionization parameter, or due to a contribution from shock-heating. We find that photoionization of super-solar metallicity gas (Z/ZZ/Z_{\odot} = 2.1) by an AGN-like continuum (α\alpha=--1.0) at a moderate ionization parameter (UU = 0.018) gives the best overall fit to the complete X-SHOOTER emission line spectrum. We identify a strong degeneracy between column density and Doppler parameter such that it is possible to obtain a reasonable fit to the \ion{H}{I} absorption feature across the range log N(\ion{H}{I}/cm2^{-2}) = 15.20 and 19.63, with the two best-fitting occurring near the extreme ends of this range. The extended \ion{H}{I} absorber is blueshifted relative to the emission line gas, but shows a systematic decrease in blueshift towards larger radii, consistent with a large scale expanding shell.Comment: 25 pages, 18 figures, 10 tables. Accepted for publication in MNRAS. Published: 23 November 201

    Constraining the Thermal Dust Content of Lyman-Break Galaxies in an Overdense Field at z~5

    Full text link
    We have carried out 870 micron observations in the J1040.7-1155 field, known to host an overdensity of Lyman break galaxies at z=5.16 +/- 0.05. We do not detect any individual source at the S(870)=3.0 mJy/beam (2 sigma) level. A stack of nine spectroscopically confirmed z>5 galaxies also yields a non-detection, constraining the submillimeter flux from a typical galaxy at this redshift to S(870)<0.85 mJy, which corresponds to a mass limit M(dust)<1.2x10^8 M_sun (2 sigma). This constrains the mass of thermal dust in distant Lyman break galaxies to less than one tenth of their typical stellar mass. We see no evidence for strong submillimeter galaxies associated with the ultraviolet-selected galaxy overdensity, but cannot rule out the presence of fainter, less massive sources.Comment: 5 pages, 2 figures. MNRAS in pres

    Morphologies of local Lyman break galaxy analogs II: A Comparison with galaxies at z=2-4 in ACS and WFC3 images of the Hubble Ultra Deep Field

    Get PDF
    Lyman break galaxies (LBGs) display a range in structures (from single/compact to clumpy/extended) that is different from typical local star-forming galaxies. Recently, we have introduced a sample of rare, nearby (z<0.3) starbursts that appear to be good analogs of LBGs. These "Lyman Break Analogs" (LBAs) provide an excellent training set for understanding starbursts at different redshifts. We present an application of this by comparing the rest-frame UV/optical morphologies of 30 LBAs with those of sBzK galaxies at z~2, and LBGs at z~3-4 in the HUDF. The UV/optical colors and sizes of LBAs and LBGs are very similar, while the BzK galaxies are somewhat redder and larger. There is significant overlap between the morphologies (G, C, A and M_20) of the local and high-z samples, although the latter are somewhat less concentrated and clumpier. We find that in the majority of LBAs the starbursts appear to be triggered by interactions/mergers. When the images of the LBAs are degraded to the same sensitivity and resolution as the images of LBGs and BzK galaxies, these relatively faint asymmetric features are no longer detectable. This effect is particularly severe in the rest-frame UV. It has been suggested that high-z galaxies experience intense bursts unlike anything seen locally, possibly due to cold flows and instabilities. In part, this is based on the fact that the majority (~70%) of LBGs do not show morphological signatures of mergers. Our results suggest that this evidence is insufficient, since a large fraction of such signatures would likely have been missed in current observations of z>2 galaxies. This leaves open the possibility that clumpy accretion and mergers remain important in driving the evolution of these starbursts, together with rapid gas accretion through other means.Comment: ApJ, In Press (14 pages, 7 figures; minor changes since v1). For background material, see http://www.mpa-garching.mpg.de/~overzier/index.htm

    Feedback in the local LBG Analog Haro 11 as probed by far-UV and X-ray observations

    Full text link
    We have re-analyzed FUSE data and obtained new Chandra observations of Haro 11, a local (D_L=88 Mpc) UV luminous galaxy. Haro 11 has a similar far-UV luminosity (10^10.3 L_\odot), UV surface brightness (10^9.4 L_\odot kpc^-2), SFR, and metallicity to that observed in Lyman Break Galaxies (LBGs). We show that Haro 11 has extended, soft thermal (kT~0.68 keV) X-ray emission with a luminosity and size which scales with the physical properties (e.g. SFR, stellar mass) of the host galaxy. An enhanced alpha/Fe, ratio of ~4 relative to solar abundance suggests significant supernovae enrichment. These results are consistent with the X-ray emission being produced in a shock between a supernovae driven outflow and the ambient material. The FUV spectra show strong absorption lines similar to those observed in LBG spectra. A blueshifted absorption component is identified as a wind outflowing at ~200-280 km/s. OVI\lambda\lambda1032,1038 emission, the dominant cooling mechanism for coronal gas at T~10^5.5 K is also observed. If associated with the outflow, the luminosity of the OVI emission suggests that <20% of the total mechanical energy from the supernovae and solar winds is being radiated away. This implies that radiative cooling through OVI is not significantly inhibiting the growth of the outflowing gas. In contradiction to the findings of Bergvall et al 2006, we find no convincing evidence of Lyman continuum leakage in Haro 11. We conclude that the wind has not created a `tunnel' allowing the escape of a significant fraction of Lyman continuum photons and place a limit on the escape fraction of f_{esc}<2%. Overall, both Haro 11 and a previously observed LBG analogue VV 114, provide an invaluable insight into the X-ray and FUV properties of high redshift LBGs.Comment: Accepted for publication in ApJ, 40 pages, 17 figure

    The Emission-Line Spectra of Major Mergers: Evidence for Shocked Outflows

    Get PDF
    Using a spectral decomposition technique (Soto & Martin 2012, hereafter Paper I), we investigate the physical origin of the high-velocity emission line gas in a sample of 39 gas-rich, ultraluminous infrared galaxy (ULIRG) mergers. Regions with shock-like excitation were identified in two kinematically distinct regimes, characterized by broad (σ>\sigma > 150 \kms) and narrow linewidths. Here we investigate the physical origin of the high-velocity (broad) emission with shock-like line ratios. Considering the large amount of extinction in these galaxies, the blueshift of the broad emission suggests an origin on the near side of the galaxy and therefore an interpretation as a galactic outflow. The large spatial extent of the broad, shocked emission component is generally inconsistent with an origin in the narrow-line region of a AGN, so we conclude that energy and momentum supplied by the starburst drives these outflows. The new data are used to examine the fraction of the supernova energy radiated by shocks and the mass loss rate in the warm-ionized phase of the wind. We show that the shocks produced by galactic outflows can be recognized in moderately high-resolution, integrated spectra of these nearby, ultraluminous starbursts. The spectral fitting technique introduced in Paper I may therefore be used to improve the accuracy of the physical properties measured for high-redshift galaxies from their (observed frame) infrared spectra.Comment: Submitted to ApJ. 12 Pages, 7 Figures, 1 Table. This is a companion paper to "Gas Excitation in ULIRGS: Maps of Diagnostic Emission-Line Ratios in Space and Velocity" by Soto & Martin 201

    The star formation history and metal content of the "Green Peas". New detailed GTC-OSIRIS spectrophotometry of three galaxies

    Full text link
    We present deep broad-band imaging and long-slit spectroscopy of three compact, low-mass starburst galaxies at redshift z\sim0.2-0.3, also referred to as Green Peas (GP). We measure physical properties of the ionized gas and derive abundances for several species with high precision. We find that the three GPs display relatively low extinction, low oxygen abundances, and remarkably high N/O ratios We also report on the detection of clear signatures of Wolf-Rayet (WR) stars in these galaxies. We carry out a pilot spectral synthesis study using a combination of both population and evolutionary synthesis models. Their outputs are in qualitative agreement, strongly suggesting a formation history dominated by starbursts. In agreement with the presence of WR stars, these models show that these GPs currently undergo a major starburst producing between ~4% and ~20% of their stellar mass. However, as models imply, they are old galaxies having had formed most of their stellar mass several Gyr ago. The presence of old stars has been spectroscopically verified in one of the galaxies by the detection of Mg I 5167, 5173 absorption line. Additionally, we perform a surface photometry study based on HST data, that indicates that the three galaxies posses an exponential low-surface brightness envelope. If due to stellar emission, the latter is structurally compatible to the evolved hosts of luminous BCD/HII galaxies, suggesting that GPs are identifiable with major episodes in the assembly history of local BCDs. These conclusions highlight the importance of these objects as laboratories for studying galaxy evolution at late cosmic epochs.Comment: 30 pages, 9 figures and 7 tables. Accepted for publication in Ap
    corecore