440 research outputs found

    Pyroxene equilibration temperatures in metamorphosed ordinary chondrites

    Get PDF
    Ordinary chondrites are divided into petrographic types based on observed mineralogical and textural properties consistent with progressive thermal metamorphism from low grade (type 3) to high (type 7). Regardless of the exact cause of the metamorphism, higher-type chondrites should retain information concerning peak temperatures reached and for what duration. Using the two-pyroxene geothermometer of Lindsley, we have calculated the equilibration temperatures for 26H, L and LL type 5 and 6 ordinary chondrites, to investigate the relative peak temperatures and equilibration-states reached by these various meteorite classes. The Lindsley thermometer relies on a detailed accounting of non-quadrilateral components in pyroxenes, whose recalculated compositions are then plotted onto an empirically-derived polythermal diagram from which temperatures can be interpolated. The reported uncertainty of this method is plus or minus 50 C; in addition, close spacing of isotherms on the graph (particularly for orthopyroxene compositions) increase this uncertainty. We have parameterized the Lindsley polythermal quadrilateral for 1 atm pressure (less than 2 bar), and interpreted recalculated coordinates directly in terms of 25 C temperature intervals. Meteorites selected for this study include both relatively shocked and unshoked specimens; heavily weathered or visibly brecciated specimens were avoided. Temperatures were calculated from orthopyroxene (opx) and clinopyroxene (cpx) analyses within one relative percent of ideal sums and stoichiometry. Histograms summarizing the calculated temperatures for type 5 and 6 ordinary chondrites are shown

    ‘Blindness to the obvious’?: Treatment experiences and feminist approaches to eating disorders

    Get PDF
    Eating disorders (EDs) are now often approached as biopsychosocial problems, but the social or cultural aspects of the equation are often marginalised in treatment - relegated to mere contributory or facilitating factors. In contrast, feminist and socio-cultural approaches are primarily concerned with the relationship between EDs and the social/ cultural construction of gender. Yet although such approaches emerged directly from the work of feminist therapists, the feminist scholarship has increasingly observed, critiqued and challenged the biomedical model from a scholarly distance. As such, this article draws upon data from 15 semi-structured interviews with women in the UK context who have experience of anorexia and/or bulimia in order to explore a series of interlocking themes concerning the relationship between gender identity and treatment. In engaging the women in debate about the feminist approaches (something which has been absent from previous feminist work), the article explores how gender featured in their own understandings of their problem, and the ways in which it was - or rather wasn’t - addressed in treatment. The article also explores the women’s evaluations of the feminist discourse, and their discussions of how it might be implemented within therapeutic and clinical contexts

    Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X-ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra

    Get PDF
    Complete sets of mineral abundances for relatively unaltered volcanic or volcaniclastic rocks in Gusev Crater have been determined by modeling Mössbauer subspectral areas as mineral weight percentages, and combining those percentages with the proportions of iron-free minerals not detected by Mössbauer (normative plagioclase, apatite, and chromite, as calculated from Alpha Particle X-Ray Spectrometer (APXS) chemical analyses). Comparisons of synthetic thermal emission spectra calculated for these mineral modes with measured Miniature Thermal Emission Spectrometer (Mini-TES) spectra for the same rock classes show either good agreements or discrepancies that we attribute to sodic plagioclase compositions or unmodeled sulfate, glass, or pigeonite. The normative compositions of olivine, pyroxene, and feldspar calculated from APXS data are consistent with spectroscopic constraints on mineral compositions. Systematic variations between olivine abundances in APXS norms (which sample tens of micrometers depth) and olivine proportions measured by Mössbauer (which sample hundreds of micrometers depth) support the hypothesis that dissolution of olivine by acidic fluids has occurred on weathered rock surfaces

    The contamination of the surface of Vesta by impacts and the delivery of the dark material

    Full text link
    The Dawn spacecraft observed the presence of dark material, which in turn proved to be associated with OH and H-rich material, on the surface of Vesta. The source of this dark material has been identified with the low albedo asteroids, but it is still a matter of debate whether the delivery of the dark material is associated with a few large impact events, to micrometeorites or to the continuous, secular flux of impactors on Vesta. The continuous flux scenario predicts that a significant fraction of the exogenous material accreted by Vesta should be due to non-dark impactors likely analogous to ordinary chondrites, which instead represent only a minor contaminant in the HED meteorites. We explored the continuous flux scenario and its implications for the composition of the vestan regolith, taking advantage of the data from the Dawn mission and the HED meteorites. We used our model to show that the stochastic events scenario and the micrometeoritic flux scenario are natural consequences of the continuous flux scenario. We then used the model to estimate the amounts of dark and hydroxylate materials delivered on Vesta since the LHB and we showed how our results match well with the values estimated by the Dawn mission. We used our model to assess the amount of Fe and siderophile elements that the continuous flux of impactors would mix in the vestan regolith: concerning the siderophile elements, we focused our attention on the role of Ni. The results are in agreement with the data available on the Fe and Ni content of the HED meteorites and can be used as a reference frame in future studies of the data from the Dawn mission and of the HED meteorites. Our model cannot yet provide an answer to the fate of the missing non-carbonaceous contaminants, but we discuss possible reasons for this discrepancy.Comment: 31 pages, 7 figures, 4 tables. Accepted for publication on the journal ICARUS, "Dark and Bright Materials on Vesta" special issu

    Mars sample return – a proposed mission campaign whose time is now

    Get PDF
    The analysis in Earth laboratories of samples that could be returned from Mars is of extremely high interest to the international Mars exploration community. IMEWG (the International Mars Exploration Working Group) has been evaluating options, by means of a working group referred to as iMOST, to refine the scientific objectives of MSR. The Mars 2020 sample-caching rover mission is the first component of the Mars Sample Return campaign, so its existence constitutes a critical opportunity. Finally, on April 26, 2018, NASA and ESA signed a Statement of Intent to work together to formulate, by the end of 2019, a joint plan for the retrieval missions that are essential to the completion of the MSR Campaign. All of these converged April 25-27, 2018 in Berlin, Germany, at the 2nd International Mars Sample Return Conference

    In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars

    Get PDF
    Experimental data for alteration of synthetic Martian basalts at pH=0-1 indicate that chemical fractionations at low pH are vastly different from those observed during terrestrial weathering. Rock analyses from Gusev crater are well described by the relationships apparent from low pH experimental alteration data. A model for rock surface alteration is developed which indicates that a leached alteration zone is present on rock surfaces at Gusev. This zone is not chemically fractionated to a large degree from the underlying rock interior, indicating that the rock surface alteration process has occurred at low fluid-to-rock ratio. The geochemistry of natural rock surfaces analyzed by APXS is consistent with a mixture between adhering soil/dust and the leached alteration zone. The chemistry of rock surfaces analyzed after brushing with the RAT is largely representative of the leached alteration zone. The chemistry of rock surfaces analyzed after grinding with the RAT is largely representative of the interior of the rock, relatively unaffected by the alteration process occurring at the rock surface. Elemental measurements from the Spirit, Opportunity, Pathfinder and Viking 1 landing sites indicate that soil chemistry from widely separated locations is consistent with the low-pH, low fluid to rock ratio alteration relationships developed for Gusev rocks. Soils are affected principally by mobility of FeO and MgO, consistent with alteration of olivine-bearing basalt and subsequent precipitation of FeO and MgO bearing secondary minerals as the primary control on soil geochemistry

    First mineralogical maps of 4 Vesta

    Get PDF
    Before Dawn arrived at 4 Vesta only very low spatial resolution (~50 km) albedo and color maps were available from HST data. Also ground-based color and spectroscopic data were utilized as a first attempt to map Vesta’s mineralogical diversity [1-4]. The VIR spectrometer [5] onboard Dawn has ac-quired hyperspectral data while the FC camera [6] ob-tained multi-color data of the Vestan surface at very high spatial resolutions, allowing us to map complex geologic, morphologic units and features. We here re-port about the results obtained from a preliminary global mineralogical map of Vesta, based on data from the Survey orbit. This map is part of an iterative map-ping effort; the map is refined with each improvement in resolution

    Recommended Maximum Temperature For Mars Returned Samples

    Get PDF
    The Returned Sample Science Board (RSSB) was established in 2015 by NASA to provide expertise from the planetary sample community to the Mars 2020 Project. The RSSB's first task was to address the effect of heating during acquisition and storage of samples on scientific investigations that could be expected to be conducted if the samples are returned to Earth. Sample heating may cause changes that could ad-versely affect scientific investigations. Previous studies of temperature requirements for returned mar-tian samples fall within a wide range (-73 to 50 degrees Centigrade) and, for mission concepts that have a life detection component, the recommended threshold was less than or equal to -20 degrees Centigrade. The RSSB was asked by the Mars 2020 project to determine whether or not a temperature requirement was needed within the range of 30 to 70 degrees Centigrade. There are eight expected temperature regimes to which the samples could be exposed, from the moment that they are drilled until they are placed into a temperature-controlled environment on Earth. Two of those - heating during sample acquisition (drilling) and heating while cached on the Martian surface - potentially subject samples to the highest temperatures. The RSSB focused on the upper temperature limit that Mars samples should be allowed to reach. We considered 11 scientific investigations where thermal excursions may have an adverse effect on the science outcome. Those are: (T-1) organic geochemistry, (T-2) stable isotope geochemistry, (T-3) prevention of mineral hydration/dehydration and phase transformation, (T-4) retention of water, (T-5) characterization of amorphous materials, (T-6) putative Martian organisms, (T-7) oxidation/reduction reactions, (T-8) (sup 4) He thermochronometry, (T-9) radiometric dating using fission, cosmic-ray or solar-flare tracks, (T-10) analyses of trapped gasses, and (T-11) magnetic studies

    Thermal history modeling of the H chondrite parent body

    Full text link
    The cooling histories of individual meteorites can be empirically reconstructed by using ages from different radioisotopic chronometers with distinct closure temperatures. For a group of meteorites derived from a single parent body such data permit the reconstruction of the cooling history and properties of that body. Particularly suited are H chondrites because precise radiometric ages over a wide range of closure temperatures are available. A thermal evolution model for the H chondrite parent body is constructed by using all H chondrites for which at least three different radiometric ages are available. Several key parameters determining the thermal evolution of the H chondrite parent body and the unknown burial depths of the H chondrites are varied until an optimal fit is obtained. The fit is performed by an 'evolution algorithm'. Empirical data for eight samples are used for which radiometric ages are available for at least three different closure temperatures. A set of parameters for the H chondrite parent body is found that yields excellent agreement (within error bounds) between the thermal evolution model and empirical data of six of the examined eight chondrites. The new thermal model constrains the radius and formation time of the H chondrite parent body (possibly (6) Hebe), the initial burial depths of the individual H chondrites, the average surface temperature of the body, the average initial porosity of the material the body accreted from, and the initial 60Fe content of the H chondrite parent body.Comment: 16 pages, 7 figure
    • …
    corecore