135 research outputs found
Tube choledochoureterostomy: A simple method for bile diversion
A technique of bile diversion by tube choledochoureterostomy has been devised for the purpose of studying the role of bile in the intestinal absorption of drugs. This method was used in six dogs. No technical difficulties or major complications developed, as are inevitable with alternative methods, including external fistula. © 1990 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted
Search for {\eta}'(958)-nucleus bound states by (p,d) reaction at GSI and FAIR
The mass of the {\eta}' meson is theoretically expected to be reduced at
finite density, which indicates the existence of {\eta}'-nucleus bound states.
To investigate these states, we perform missing-mass spectroscopy for the (p,
d) reaction near the {\eta}' production threshold. The overview of the
experimental situation is given and the current status is discussed.Comment: 6 pages, 3 figures; talk at II Symposium on applied nuclear physics
and innovative technologies, September 24th - 27th, 2014, Jagiellonian
University, Krak\'ow Poland; to appear in Acta Physica Polonica
Spectroscopy of -nucleus bound states at GSI and FAIR --- very preliminary results and future prospects ---
The possible existence of \eta'-nucleus bound states has been put forward
through theoretical and experimental studies. It is strongly related to the
\eta' mass at finite density, which is expected to be reduced because of the
interplay between the anomaly and partial restoration of chiral
symmetry. The investigation of the C(p,d) reaction at GSI and FAIR, as well as
an overview of the experimental program at GSI and future plans at FAIR are
discussed.Comment: 7 pages, 3 figures; talk at the International Conference on Exotic
Atoms and Related Topics (EXA2014), Vienna, Austria, 15-19 September 2014. in
Hyperfine Interactions (2015
Self-Similar Bootstrap of Divergent Series
A method is developed for calculating effective sums of divergent series.
This approach is a variant of the self-similar approximation theory. The
novelty here is in using an algebraic transformation with a power providing the
maximal stability of the self-similar renormalization procedure. The latter is
to be repeated as many times as it is necessary in order to convert into closed
self-similar expressions all sums from the series considered. This multiple and
complete renormalization is called self-similar bootstrap. The method is
illustrated by several examples from statistical physics.Comment: 1 file, 22 pages, RevTe
WASA-FRS experiments in FAIR Phase-0 at GSI
We have developed a new and unique experimental setup integrating the central part of the Wide Angle Shower Apparatus (WASA) into the Fragment Separator (FRS) at GSI. This combination opens up possibilities of new experiments with high-resolution spectroscopy at forward and measurements of light decay particles with nearly full solid-angle acceptance in coincidence. The first series of the WASA-FRS experiments have been successfully carried out in 2022. The developed experimental setup and two physics experiments performed in 2022 including the status of the preliminary data analysis are introduced
Lifetime measurement of neutron-rich even-even molybdenum isotopes
Background: In the neutron-rich A approximate to 100 mass region, rapid shape changes as a function of nucleon number as well as coexistence of prolate, oblate, and triaxial shapes are predicted by various theoretical models. Lifetime measurements of excited levels in the molybdenum isotopes allow the determination of transitional quadrupole moments, which in turn provides structural information regarding the predicted shape change. Purpose: The present paper reports on the experimental setup, the method that allowed one to measure the lifetimes of excited states in even-even molybdenum isotopes from mass A = 100 up to mass A = 108, and the results that were obtained. Method: The isotopes of interest were populated by secondary knock-out reaction of neutron-rich nuclei separated and identified by the GSI fragment separator at relativistic beam energies and detected by the sensitive PreSPEC-AGATA experimental setup. The latter included the Lund-York-Cologne calorimeter for identification, tracking, and velocity measurement of ejectiles, and AGATA, an array of position sensitive segmented HPGe detectors, used to determine the interaction positions of the gamma ray enabling a precise Doppler correction. The lifetimes were determined with a relativistic version of the Doppler-shift-attenuation method using the systematic shift of the energy after Doppler correction of a gamma-ray transition with a known energy. This relativistic Doppler-shift-attenuation method allowed the determination of mean lifetimes from 2 to 250 ps. Results: Even-even molybdenum isotopes from mass A = 100 to A = 108 were studied. The decays of the low-lying states in the ground-state band were observed. In particular, two mean lifetimes were measured for the first time: tau = 29.7(-9.1)(+11.3) ps for the 4(+) state of Mo-108 and tau = 3.2(-0.7)(+ 0.7) ps for the 6(+) state of Mo-102. Conclusions: The reduced transition strengths B(E2), calculated from lifetimes measured in this experiment, compared to beyond-mean-field calculations, indicate a gradual shape transition in the chain of molybdenum isotopes when going from A = 100 to A = 108 with a maximum reached at N = 64. The transition probabilities decrease for Mo-108 which may be related to its well-pronounced triaxial shape indicated by the calculations
- …