266 research outputs found

    Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley

    Get PDF
    The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with <i>d</i><sub>p</sub> > 0.96 μm and 10% of particle mass for particles with <i>d</i><sub>p</sub> < 0.96 μm. Non-exchangeable aliphatic (H–C), unsaturated aliphatic (H–C–C=), oxygenated saturated aliphatic (H–C–O), acetalic (O–CH–O) and aromatic (Ar–H) protons were determined by proton nuclear magnetic resonance (<sup>1</sup>H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m<sup>−3</sup> for particles with 1.5 < <i>d</i><sub>p</sub> < 3.0 μm to 73.9 ± 12.3 nmol m<sup>−3</sup> for particles with <i>d</i><sub>p</sub> < 0.49 μm. The molar H / C ratios varied from 0.48 ± 0.05 to 0.92 ± 0.09, which were comparable to those observed for combustion-related organic aerosol. The R–H was the most abundant group, representing about 45% of measured total non-exchangeable organic hydrogen concentrations, followed by H–C–O (27%) and H–C–C= (26%). Levoglucosan, amines, ammonium and methanesulfonate were identified in NMR fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of <sup>1</sup>H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ<sup>13</sup>C abundance from −26.81 ± 0.18&permil; for the smallest particles to −25.93 ± 0.31&permil; for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with <i>d</i><sub>p</sub> > 3.0 μm and <i>d</i><sub>p</sub> < 0.96 μm

    Emission fluxes and atmospheric degradation of monoterpenes above a boreal forest: field measurements and modelling

    Get PDF
    The contribution of monoterpenes to aerosol formation processes within and above forests is not well understood. This is also true for the particle formation events observed during the BIOFOR campaigns in Hyytiälä, Finland. Therefore, the diurnal variation of the concentrations of several biogenic volatile organic compounds (BVOCs) and selected oxidation products in the gas and particle phase were measured on selected days during the campaigns in Hyytiälä, Finland. α-pinene and Δ3-carene were found to represent the most important monoterpenes above the boreal forest. A clear vertical gradient of their concentrations was observed together with a change of the relative monoterpene composition with height. Based on concentration profile measurements of monoterpenes, their fluxes above the forest canopy were calculated using the gradient approach. Most of the time, the BVOC fluxes show a clear diurnal variation with a maximum around noon. The highest fluxes were observed for α-pinene with values up to 20 ng m−2 s−1 in summer time and almost 100 ng m−2 s−1 during the spring campaign. Furthermore, the main oxidation products from α-pinene, pinonaldehyde, and from β-pinene, nopinone, were detected in the atmosphere above the forest. In addition to these more volatile oxidation products, pinic and pinonic acid were identified in the particle phase in a concentration range between 1 and 4 ng m−3. Beside these direct measurement of known oxidation products, the chemical sink term in the flux calculations was used to estimate the amount of product formation of the major terpenes (α-pinene, β-pinene, Δ3-carene). A production rate of very low volatile oxidation products (e.g., multifunctional carboxylic) from ·OH- and O3-reaction of monoterpenes of about 1.3·104 molecules cm−3 s−1 was estimated for daylight conditions during summer time. Additionally, model calculations with the one-dimensional multilayer model CACHE were carried out to investigate the diurnal course of BVOC fluxes and chemical degradation of terpenes

    Characterization of Polar Organic Components in Fine Aerosols in the Southeastern United States: Identity, Origin, and Evolution

    Get PDF
    Filter samples of fine aerosols collected in the Southeastern United States in June 2004 were analyzed for the characterization of polar organic components. Four analytical techniques, liquid chromatography –mass spectrometry, ion trap mass spectrometry, laser desorption ionization mass spectrometry, and high-resolution mass spectrometry, were used for identification and quantification. Forty distinct species were detected, comprising on average 7.2% and 1.1% of the total particulate organic mass at three inland sites and a coastal site, respectively. The relative abundance of these species displays a rather consistent distribution pattern in the inland region, whereas a different pattern is found at the coastal site. Chemical and correlation analyses suggest that the detected species are secondary in nature and originate from terpene oxidation, with possible participation of NOx and SO2. It is estimated that polar, acidic components in fine aerosols in the Southeastern United States cover a molecular weight range of 150–400 Da and do not appear to be oligomeric. Other components with MW up to 800 Da may also be present. The detected polar organic species are similar to humic-like substances (HULIS) commonly found in fine aerosols in other rural areas. We present the first, direct evidence that atmospheric processing of biogenic emissions can lead to the formation of certain HULIS species in fine aerosols, and that this may be a typical pathway in the background atmosphere in continental regions; nevertheless, a natural source for HULIS, such as from aquatic and/or terrestrial humic/fulvic acids and their degradation products, cannot be precluded

    Designing and implementing a research integrity promotion plan: recommendations for research funders

    Get PDF
    Various stakeholders in science have put research integrity high on their agenda. Among them, research funders are prominently placed to foster research integrity by requiring that the organizations and individual researchers they support make an explicit commitment to research integrity. Moreover, funders need to adopt appropriate research integrity practices themselves. To facilitate this, we recommend that funders develop and implement a Research Integrity Promotion Plan (RIPP). This Consensus View offers a range of examples of how funders are already promoting research integrity, distills 6 core topics that funders should cover in a RIPP, and provides guidelines on how to develop and implement a RIPP. We believe that the 6 core topics we put forward will guide funders towards strengthening research integrity policy in their organization and guide the researchers and research organizations they fund

    DESIGN OF GEODETIC NETWORKS BASED ON OUTLIER IDENTIFICATION CRITERIA: AN EXAMPLE APPLIED TO THE LEVELING NETWORK

    Get PDF
    We present a numerical simulation method for designing geodetic networks. The quality criterion considered is based on the power of the test of data snooping testing procedure. This criterion expresses the probability of the data snooping to identify correctly an outlier. In general, the power of the test is defined theoretically. However, with the advent of the fast computers and large data storage systems, it can be estimated using numerical simulation. Here, the number of experiments in which the data snooping procedure identifies the outlier correctly is counted using Monte Carlos simulations. If the network configuration does not meet the reliability criterion at some part, then it can be improved by adding required observation to the surveying plan. The method does not use real observations. Thus, it depends on the geometrical configuration of the network; the uncertainty of the observations; and the size of outlier. The proposed method is demonstrated by practical application of one simulated leveling network. Results showed the needs of five additional observations between adjacent stations. The addition of these new observations improved the internal reliability of approximately 18%. Therefore, the final designed network must be able to identify and resist against the undetectable outliers – according to the probability levels

    Mechanical Deformation Induced in Si and GaN Under Berkovich Nanoindentation

    Get PDF
    Details of Berkovich nanoindentation-induced mechanical deformation mechanisms of single-crystal Si(100) and the metal-organic chemical-vapor deposition (MOCVD) derived GaN thin films have been systematic investigated by means of micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM) techniques. The XTEM samples were prepared by using focused ion beam (FIB) milling to accurately position the cross-section of the nanoindented area. The behaviors of the discontinuities displayed in the loading and unloading segments of the load-displacement curves of Si and GaN thin films performed with a Berkovich diamond indenter tip were explained by the observed microstructure features obtained from XTEM analyses. According to the observations of micro-Raman and XTEM, the nanoindentation-induced mechanical deformation is due primarily to the generation and propagation of dislocations gliding along the pyramidal and basal planes specific to the hexagonal structure of GaN thin films rather than by indentation-induced phase transformations displayed in Si
    corecore