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Abstract:  

We present a numerical simulation method for designing geodetic networks. The quality 
criterion considered is based on the power of the test of data snooping testing procedure. This 
criterion expresses the probability of the data snooping to identify correctly an outlier. In 
general, the power of the test is defined theoretically. However, with the advent of the fast 
computers and large data storage systems, it can be estimated using numerical simulation. Here, 
the number of experiments in which the data snooping procedure identifies the outlier correctly 
is counted using Monte Carlos simulations. If the network configuration does not meet the 
reliability criterion at some part, then it can be improved by adding required observation to the 
surveying plan. The method does not use real observations. Thus, it depends on the geometrical 
configuration of the network; the uncertainty of the observations; and the size of outlier. The 
proposed method is demonstrated by practical application of one simulated leveling network. 
Results showed the needs of five additional observations between adjacent stations. The 
addition of these new observations improved the internal reliability of approximately 18%. 
Therefore, the final designed network must be able to identify and resist against the 
undetectable outliers – according to the probability levels.  
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Resumo:  

Nós apresentamos um método de simulação numérica para planejamento de redes geodésicas. 
O critério de qualidade considerado é baseado no poder do teste do procedimento estatístico 
data snooping. Esse critério expressa a probabilidade do procedimento data snooping de 
identificar corretamente um outlier. Em geral, o valor do poder do teste é sempre desconhecido 
na prática (definido na teoria). Porém, com o advento de computadores mais rápidos e sistemas 
de armazenamento de dados de maior capacidade, o poder do teste pode ser estimado por 
meio de simulações numéricas. O número de experimentos que o procedimento data snooping 
identifica corretamente um outlier é quantificado por meio do método Monte Carlo de 
simulação. Se a configuração inicial da rede não atender o critério de confiabilidade, então uma 
nova observação é adicionada no projeto da rede. O método não faz uso de observações reais 
coletadas em campo, dependendo apenas da configuração geométrica da rede, das incertezas 
das observações e da magnitude dos outliers. A eficiência do método é verificada por meio de 
um exemplo numérico de uma rede de nivelamento geométrico simulada. Os resultados 
mostraram a necessidade de cinco observações adicionais entre os pontos adjacentes. A adição 
destas novas observações melhorou a confiabilidade interna da rede de aproximadamente 18%. 
Portanto, a rede é projetada de modo que seja capaz de identificar outliers e ainda resistir a 
outilers não identificados nas observações – de acordo com os níveis de probabilidade. 

Palavras-chave: Confiabilidade, Outlier, Simulação Numérica, Monte Carlo, Redes Geodésicas. 

  

1. Introduction 

  

Geodetic networks are essential for the most geodetic engineering projects, such as monitoring 
the position and deformation of man-made structures (bridges, dams, power plants, tunnels, 
ports, etc.), to monitor the crustal deformation of the Earth, to implement an urban and rural 
cadastre, to establish and maintain a geospatial reference frame. Before the installation of 
geodetic marks and gathering of survey data, geodetic networks should be designed according to 
the pre-established quality criteria, such as precision, reliability and costs. The precision is 
related to the covariance matrix of estimated parameters (i.e. point’s coordinates or 
displacement of points). The ability of the measurements scheme to identify outliers in the 
observations as well as their effects on estimated parameters are associated with the measures 
of reliability. Finally, the cost is related to the effort required to implement the design and 
related expenses (i.e. it expressed in terms of the observation schedule).Therefore, the design 
problem can be formulated as: “finding the optimum solution that increases the precision and 
reliability of the network and, at the same time, it has the lowest possible cost”. In other words, 
a network should be designed in such a way that: 

1

r c max−+ + →pΦ Φ Φ     (1) 

Φp, Φr and Φc are weight coefficients for precision, reliability and cost, respectively. Additional 
criteria such as sensitivity to detect displacements or deformation parameters of certain 
magnitude can also be considered (see e.g. Vaníček et al., 1990; Kuang, 1991; Even-Tzur, 2002; 
Erdogan and Hekimoglu, 2014). The design problem have been widely developed and 
investigated since the pioneering work of Helmert (1868). Thenceforth, a series of papers have 
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been published on the development of the new algorithms by simulated examples and real 
applications (see e.g. Baarda, 1973; Grafarend, 1974; Baarda, 1977; Koch, 1982; Knight et al., 
2010; Hekimoglu et al., 2011; Hekimoglu and Erdogan, 2012; Klein et al., 2012; Klein, 2014). 
Although the design of geodetic networks is a widely investigated topic, there are open issues 
requiring further research. 

The design problem can be solved by the following methods: 

• Trial-and-error (e.g. Pelzer, 1980; Grafarend and Sanso, 1985); 

• Analytical (e.g. Schaffrin, 1981; Grafarend and Sanso, 1985; Cross, 1985; Schaffrin, 1985; Xu, 
1989; Kuang, 1991, 1996; Blewitt, 2000; Amiri-Simkooei, 2004; Eshagh, 2005; Bagherbandi et al. 
2009; Dalmolin and Oliveira, 2013; Mehrabi and Voosoghi, 2014; Eshagh and Alizadeh-
Khameneh, 2015); and 

• Intelligent or meta-heuristic (e.g.Simulated Annealing by Johnson and Wyatt 1994; Baselga, 
2011; Genetic Algorithm by Sahabi et al. 2008; Dwivedi and Dikshit 2013; Graph Theory by 
Kortesis and Dermanis,1987; Artificial Neural Networks by Jwo and Chen, 2006; and particle 
swarm optimization algorithm by Yetkin et al. 2011). 

However, most of these studies are based on theoretical criteria, such as criteria matrices 
(Baarda, 1973), error ellipses or ellipsoids (Vaníček and Krakiwsky, 1986) and redundancy 
numbers (Amiri-Simkooei, 2001a, 2001b). Unlike these, in this paper, we purpose an alternative 
method based on Monte Carlo simulation technique (MCS) to design a geodetic network in the 
sense of high reliability.In the context of reliability, we highlight that the vast majority of the 
methods consider the redundancy numbers of the observations as reliability criterion (e.g.: 
Baarda, 1968; Amiri-Simkooei et al. 2012; Yetkin, 2013). Here, on the other hand, the reliability 
criterion is based on the power of the test of iterative data snooping testing procedure. 

We also highlight that the proposed method discards the use of the observation vector of Gauss-
Markov model. In fact, the only needs are the geometrical network configuration (given by 
Jacobian matrix); the uncertainty of the observations (given by nominal standard deviation of the 
equipment); and the magnitude intervals of the outliers. The random errors are generated 
artificially from the normal statistical distribution, while the magnitude of outliers is selected 
using standard uniform distribution. 

The paper is organized as follows:  

- Section 2: contains the preliminary concepts. 

- Section 3: contains the background regarding the theory within our scope.  

- Section 4: the method proposed here for designing geodetic networks is presented.  

- Section 5: a numerical example of the proposed method is given for a leveling network. 

- Section 6: summarizes the conclusions and gives recommendations for future studies 
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2. Preliminary Concepts 

  

Here, the term outlier is defined according to Lehmann (2013): “an outlier is an observation that 
is so probably caused by a gross error that it is better not used or not used it is”. One of the well-
known methods for outlier identification in geodetic data analysis is Baarda’s testing procedure. 
This method was proposed by Baarda (1968) and consists of three steps (see e.g. Teunissen 
2006): detection (also known as overall model test), identification (also known as data snooping) 
and adaption (a corrective action, such as elimination of identified observation as an outlier).  

At each iteration, only a single observation can be identified in the data snooping procedure. 
Once an identified observation is excluded, the least squares estimation (LSE) adjustment is 
restarted without the rejected observation and again the identification step (data snooping) is 
applied. Of course, if redundancy permits, this procedure is repeated until none identification. 
This procedure is called “iterative data snooping” (e.g. Teunissen, 2006). In this paper we are 
exclusively concerned with iterative data snooping procedure (DS). 

Since DS is based on a statistical hypothesis testing with an alternative hypothesis for each 
observation, it may lead to a false decision as follows: 

• Type I error or false alert (probability level α) – Probability of identifying an outlier when there 
is none; 

• Type II error or missed detection (probability level β) – Probability of non-identifying an outlier 
when there is at least one; and 

• Type III error or wrong exclusion (probability level κ) – Probability of misidentification a non-
outlying observation as an outlier, instead of the outlying one. This type of error decision was 
introduced by Hawkins (1980) and Förstner (1983). 

The rate of type I decision error in a binary hypothesis test (i.e., with a single alternative 
hypothesis) can be selected by the user. The rate of type II decision error cannot. Lehmann and 
Voß-Böhme (2017) also point out that a test statistic with a low rate of type II is said to be 
powerful in the binary hypothesis case, when only a single alternative hypothesis is considered. 
However, in case of multiple alternative hypotheses (i.e., DS case), without considering the Type 
III error, there is a high risk of over-estimating the successful identification probability (see e.g. 
Yang et al. 2013). On the other hand, the confidence level is the probability that a non-outlying 
observation is correctly ignored; the power of the test is the probability that an outlier is 
correctly identified. Therefore, the confidence level and the power of the test are the 
probabilities of the test result leading to correct decisions, as opposed to the occurrence of type 
I, II and III errors (see, for example, Förstner, 1983; Teunissen, 2006; Klein et al., 2015b). In 
addition to these probabilities, the DS can identify more observations than real number of 
outliers (Rofatto et al., 2017). 

Many of the relevant probabilities in this contribution are multivariate integrals over complex 
regions (Teunissen, 2017). They therefore need to be computed by means of numerical 
simulation such as MCS. The basic idea is to approximate probability distributions by frequency 
distributions of computer random experiments performed using pseudo random numbers. 
Therefore, as pointed out Lehmann (2012), MCS methods are used whenever the functional 
relationships are analytically not tractable, as is the case for DS. This simulation technique based 
on the pioneering idea of Hekimoglu and Koch (1999) has been recently applied in geodesy. For 
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example, Ryan and Lachapelle (2001) used simulations to obtain the minimal detectable bias 
polygon for the case of two outliers;Lehmann and Scheffler (2011) used MCS method to solve 
the problem how to determine the optimal levels of Type I error probabilities for global and local 
tests in DS; Lehmann (2012) used MCS method to improve the critical values of the test 
statistics;  Niemeier and Tengen (2017) extended the classical concept of geodetic network 
adjustment by combining the uncertainty modeling and MCS. 

   

3. Data Snooping Procedure: a particular case of statistical testing 
procedures for identification of outliers based on maximum likelihood 

ratio 

  

The mathematical model generally adopted in geodetic data analysis is the linear(ised) Gauss-
Markov model, given by (Koch, 1999): 

e y A x= −                    (2) 

where e is the n x 1 random error vector, A is the n x u design (or Jacobian) matrix, x is the u x 1 
unknown parameters vector and y is the n x 1 observations vector.  

The most employed solution for a redundant system of equations ( n u and full column rank) is 

the weighted least squares estimator (WLSE) for the vector of unknowns ( x̂ ): 

1ˆ ( ) ( )
T T

x A W A A W y
−=                          (3) 

in which W is the n x n weight matrix of the observations, taken as W = σ0
2Σy, where σ0

2 is the 

variance factor and Σy is the covariance matrix of the observations; if Σy is diagonal, one speaks 
of weighted LSE (WLSE); if it is full, generalized LSE (GLSE). Teunissen (2003) demonstrates the 
geometric interpretation of the LSE. More details about LSE estimation can be seen in Ghilani 
(2010). 

If there are only random errors in the observations, the LSE is the best linear unbiased estimator 
(BLUE) for the unknown parameters; if the observational errors follow the multivariate normal 

distribution with mean μ = 0 and covariance matrix
 
Σy, the LSE coincides with the maximum 

likelihood estimator (Teunissen, 2003). However, the LSE is no longer optimal in the presence of 
systematic and/or outliers in the observations. In other words, despite optimal properties for 
LSE, they lack robustness or insensitivity to outliers in observations (Huber, 1964; Rousseeuw 
and Leroy, 1987; Lehmann, 2013). Therefore, statistical testing procedures for detection and 
identification of outliers have been developed. 

Quality control to identify outliers in geodetic measurements has been widely investigated since 
the pioneering work of Baarda (1968). In the sense of LSE, statistical testing procedures for 
detection and identification of outliers are based on maximum likelihood ratio. Consider a null 
hypothesis H0for the parameters of the population probability distribution of an observation 
vector y. Consider further an alternative hypothesis HA for these parameters, constructed in a 
way that H0 is a subset of HA. Thus, in the general case, the maximum likelihood ratio “λ(y)” 
between H0and HA is given by (Larson, 1974): 

0max ( | )
( )

max ( | )A

p y H
y

p y H
 =      (4) 
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where max p(y|H0) is the maximum of the probability density function (pdf) of y under H0 and 
max p(y|HA) is the maximum of the pdf of y under HA. As the null hypothesis is defined so that its 
sample space is contained in the sample space of the alternative hypothesis, the ratio in 
Equation4 lies in the interval of 0 ≤ λ(y) ≤ 1 (Teunissen, 2006). 

The test criterion for the maximum likelihood ratio is given by (Larson, 1974): 

0Do not reject H  if (y) c        (5) 

where c > 0  is the critical value for the test according to the significance level α stipulated (for 
more details, see Larson, 1974; Teunissen, 2006). 

Assuming normally distributed observation errors, a general case of hypothesis testing in linear 
models is formulated as Teunissen(2006): 

:       vs      : ;0 0yE{y} = Ax E{y} = Ax + CAH H       (6) 

where H0 is the null hypothesis (namely, absence of outliers in the observations) and HA is an 
alternative hypothesis (presence of “q” outlying observations in at certain known locations). The 
quantity Cy defines the non-random error model (in this context called outlier model) with 
dimension n x q and   is the corresponding vector of q outliers. The dimension of should be 

comprised between1 q n u  − . For example, if n=5 and q=2, then a possible outlier model is

1 0 0 0 0

0 0 1 0 0

 
=  
 

5x2C y and
1

3

2 1

 
 =  

 
x . (one outlier in each observation y1 and y3). For 

more details about error models, see e.g. Lehmann and Lösler (2016). The performance of the 
statistic test Tq for multiple outliers can be found, for example, in Klein et al. (2015a) and Klein et 
al. (2017). 

DS procedure is a particular case of maximum likelihood ratio test when only one outlier (q = 1) 
is present in the data set at a time (see e.g. Baarda, 1968; Pope, 1976; Berber and Hekimoglu, 
2003; Lehmann, 2012). Therefore, the outlier model for q=1 is a n x 1 unit vector with 1 in its ith 

entry and zeros in the remaining (e.g. 1 0 0 1 0 0 0n

T

i n
y xc  =

 
), and   is a scalar 

value with the outlier at ith observation being tested. If we consider one outlying observation in 
at certain known locations (q = 1), then the maximum likelihood ratio test for DS (Tq= 1) is given 
by (Teunissen, 2006): 

ˆ1
ˆ ˆTq= =     

0

T -1 T -1 -1 -1 T -1

0 y y y y e y y y y 0e c (c c ) c e    (7) 

where e
0
ˆ  and 0ˆe  is the estimated random error vector and a posteriori covariance matrix of 

the estimated random error computed by LSE into H0, respectively. 

Under H0, observation errors are zero-mean (multivariate) normally distributed. The null 
hypothesis is rejected if the following test statistic (Tq = 1) of the ith observation being tested 
exceeds a given critical value Κα. Κα is the critical value for the test according to the significance 
level α. Under the null hypothesis, the test statistic Tq follows the central chi-squared distribution 
with one degree of freedom; under the alternative hypothesis, the test statistic Tq follows the 
non-central chi-squared distribution with one degree of freedom and non-centrality parameter 
δ. The non-centrality parameter δ expresses the separation between the null and alternative 
hypotheses, that is, (see Figure 1): 



Design of geodetic networks based…                                                                                                                                             158 

Bulletin of Geodetic Sciences, 24(2): 152-170, Apr-Jun, 2018 

  
0 1Reject H  if: Tq K= 

      

     (8) 

2 2

ˆ0 1 (1,0) 1 (1, ): T ~ ; : T ~ ,  with q A qH H  = = =    
0

T -1 -1 2

δ y y e y yc c    (9) 

 

 

Figure 1: Probability levels related to testing hypotheses of DS.  

 

In the Figure 1, the 𝜇0 is the expectation of the H0 hypothesis and the 𝜇𝐴 is the expectation of the 
HA hypothesis. It should be noted that the test statistic Tq in equation (8) is a particular case of 
generalized test statistic, when q=1. Important to mention also that the critical value follows 
from a chi-squared distribution with one degree freedom at a significance level of α in a one-
tailed test. Baarda (1968) and Teunissen (2006) demonstrate that if q = 1, then the test statistics 
(equation 7) can also be formulated based on a standard normal distribution in a two-tailed test 
(so-called w-test). Both the chi-squared and normal distribution tests are equivalent. Usually in 
geodesy, the value of α is set between 0.1% and 1% (Kavouras, 1982; Aydin and Demirel, 2004; 
Lehmann, 2013). Furthermore, DS contains multiple alternative hypotheses, as each observation 
is individually tested. Therefore, the only observation considered contaminated by outlier is the 
one whose test statistic satisfies the inequalities Tq=1>Κα. After having identified the observation 
most suspected of being an outlier (at given α), it is excluded usually from the model, and the 
WLSE and DS are applied iteratively until there are no further outliers identified in the 
observations (Berber and Hekimoglu, 2003).  

However, three types of incorrect decisions may occur into DS and its occurrence rates are 
associated with probability levels: the significance level α is the probability of a non-outlying 
observation be misidentified as an outlier (type I error or false positive); β is the probability that 
an outlying observation not be identified as outlier (type II error or false negative); finally, a non-
outlying observation is misidentified as an outlier, instead of the outlying one (type III error given 
by κ). On other hand, the confidence level (CL) is the probability that a non-outlying observation 
is correctly ignored, therefore, CL = 1 – α; the power of the test (γ) is the probability that an 
outlier is correctly identified as outlier, i.e. γ = 1 – (β + κ). Therefore, the CL and the γ are the 
probabilities of the test result leading to correct decisions, as opposed to the occurrence of type 
I, II and III errors (see, for example, Förstner, 1983; Teunissen, 2006; Klein et al., 2015b). Here, 
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we denoted α0, β0 and κ0 as pre-established probability levels. For example, the Figure 1 shows 
these relationships in the DS procedure for CL=0.999, γ0 = 0.8, so α0 = 0.001 and β0 = 0.20, 
leading to a pre-set non-centrality parameter δ0 = 17.075 and a pre-set critical value of Κα = 
10.83. Baarda (1968) provides the monograms for those interested in obtaining δ0 values as a 
function of α0 and γ0 (for a given degree of freedom). Alternatively, Aydin and Demirel (2004) 
presented a procedure to obtain the same through approximations of the non-central chi-
squared distribution. The necessity of obtaining the non-centrality parameter is widespread in 
Geodesy (Baarda, 1968; Kavouras, 1982; Teunissen, 2006; Knight et al., 2010). 

   

4. Method Proposal to Design Geodetic Networks 

  

The method proposed here focuses on designing of the geodetic networks in terms of high 
reliability. Under the present proposal, the quality criterion to be considered during the design 
stage is based on the number of outliers correctly identified in the DS. In other words, the key to 
our method is to estimate the power of the test on DS using MCS. The method does not depend 
on the real measurements values but only on the model design, i.e. the network geometry and 
covariance matrix. Therefore, the computations can be performed before the observations are 
carried out as follows: 

1. Defining the magnitude intervals of outliers based on standard deviation of observation (e.g. 
|3σ to 9σ|, being σ the standard deviation of observation), the significance level α0 and the 
desired power of the test γ0. Often, a value deviating from the sample mean by more than three 
times (3σ) the sample standard deviation σ is assumed to be an outlier (e.g.: Hekimoglu and 
Koch, 2000). Here, we do not discuss how to choose the outlier magnitude, because it depends 
on the purpose of the geodetic project. The α0 is associated to type I error. Typically a value of 
the level α0 = 0.001 is adopted (see, e.g. Baarda, 1968). However, if this level is chosen too low 
then we get too large critical values and many outliers remain unidentified. If on the contrary 
this level is chosen too high then we get too small critical values and it is likely that good 
observations are eliminated. Lehmann (2012) shows how to strike a balance between these 
impairments of parameter estimation by using MCS methods. The γ0 represents the efficiency 
level of the DS to identify correctly an outlying observation. The γ0 is equivalent to the success 
rate considering the probability of type II and type III errors for all network observations 
(Hekimoglu and Koch, 2000; Yang et al., 2013; Klein et al., 2015b). 

2. Defining a priori geodetic network configuration (preliminary design matrix) as well as the 
observations uncertainties (preliminary of covariance matrix of the observations, including 
random components and the uncertainty associated with the systematic effects). The latter 
follows from the instrument precision, measurement techniques and field condition (Grafarend 
and Sanso, 1985). It is important to mention that the design matrix defined initially must have a 
minimum configuration to avoid rank deficiency as well as being able to detect at least one 
outlier as mentioned by Xu (2005) that ‘in order to identify outliers, one also has to further 
assume that for each model parameter, there must, at least, exist two good data that contain 
the information on such a parameter’. For example, consider the one unknown height into a 
leveling network (one-dimensional - 1D). Two observations would lead to different solutions and 
allow the detection of an inconsistency between them. Three observations would lead to 
different solutions and the identification of one outlying observation, and so on. Thus, in a 
general case, the value for ‘q’ equal to the minimal number of redundant observations across 
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each and every point, minus one, For more details on the choosing the number of outliers to be 
considered, see Klein et al. (2017). 

3. Generating synthetically a sequence of “m” random errors vector eK, k = 1,...,m of a desired 
statistical distribution. The “m” is known as the number of Monte Carlo experiments. Usually, 
one assumes that the random errors of the good measurements are normally distributed with 
expectation zero. Thus, we generate the random errors using multivariate normal distribution, 
since the assumed stochastic model for random errors is based on pre-defined matrix covariance 

of the observations, i.e. e ~ N(0,σ0
2Σy). We apply the well-known Box-Muller method (Box and 

Muller, 1958) for generation of normal pseudo random numbers (Practically we use MATLAB’s 
function mvnrnd here).  On the other hand, an outlier (q=1) is selected based on pre-established 
magnitude intervals of the outliers (see item 1) for each m Monte Carlo experiments. Here, we 
use the standard uniform distribution to select the outlier magnitude (Practically we use 
MATLAB’s function unifrnd here). The uniform distribution is a rectangular distribution with 
constant probability and implies the fact that each range of values that has the same length on 
the distributions support has equal probability of occurrence (see e.g. Lehmann and Scheffler, 
2011). For example, for 10,000 Monte Carlo experiments, if the user choices a magnitude 
interval of the outliers of |3σ to 9σ|, the probability of a 3σ error occurring is virtually the same 
as -3σ, and so on. Random and outliers are assumed to be independent (by definition) and both 
are combined to the total error as follow (see e.g. Kavouras, 1982): 

,  0
y

e c = +    ,     (10) 

where is the n x 1 total error vector, e is n x 1 random errors and cy is outlier model for q=1(see 
expression 6), and   is a scalar value with the outlier at ith observation being tested. We assume 
that e+cy   > +3σ and e+cy  < -3σ. Before computing statistical test Tq=1 it is necessary to 
relate the random error vector e and total error vector , since this statistical test depends on 

the estimated random error vector 0
ê . In the sense of LSE, this relationship is given by (see 

Kavouras, 1982): 

0
ê R= ,     (11) 

1
( )

T T
R I A A WA A W

−= −      (12) 

in which R is the n x n redundancy matrix and I is the n x n identity matrix. 

In the equation 11 the reader should be note that the multiplication of the redundancy matrix R 

and the total error ε provides the estimated random error vector 0
ê . Now, the 0

ê is not only 

composed by random errors, but also it has one of its elements contaminated by an outlier. Now 
it becomes possible to compute the test statistic Tq=1 considering the relation given by 
equation10.  

4. Quantifying the success rate (fraction of outliers correctly identified, i.e. the power of the test 
computed by MCS, see e.g. Hekimoglu and Koch, 1999; 2000) and the misidentification rates for 
one outlier after having ran m Monte Carlo experiments for each observation. The 
misidentifications are divided in two types of classes are counted in the simulations: number of 
experiments where the procedure yielded none observation identification (type II error - β); 
number of experiments in which the procedure identified a single observation but wrong 
localization (type III error, denoted here as κ). 
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5. Checking if the lowest power of the test based on MCS (γM) is greater than or equal to the 
desired power of the test (γ0) for each observation. For example, in the case of γ0 = 0.80 and one 
outlier, the outlier must be identified in at least 80% of cases. Otherwise, the network must be 
improved until the power of the test based on MCS is greater than or equal to the pre-stipulated 
power of test γ0. Here, a new observation is added in the one which presents the lowest power 
of the test based on MCS. The design stage is finished when γM is greater than or equal to γ0. 
The adding of new observations in the one less resistant to outlier in the network has been used 
by some authors. For example, Yetkin and Beber (2012) added the GPS (Global Positioning 
System) baselines to meet the robustness criterion in the design of GPS networks. The proposed 
method is summarized as a flowchart in Figure 2. 

 

Figure 2: Flowchart of the proposed method.  
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5. Numerical Examples 

  

In order to demonstrate the design method in practice, in this section we apply it to a simulated 
closed leveling network. The goal is to illustrate the design method; further considerations about 
levelling networks are outside the scope of this study. 

We consider a closed levelling network, with one control station (benchmark), and 4 points with 
unknown heights (A, B, C and D), totaling four minimally constrained points as shown in Figure 3. 
The benchmark is fixed, and the distances of the adjacent and non-adjacent stations are 
approximately 240 m and 400 m, respectively. The equipment used is a spirit level with nominal 
standard deviation for a single staff reading of ±0.02 mm/m. Lines of sight distances are kept at 
40 m. Thus, each total height difference Δhi between adjacent or non-adjacent stations is made 
of, respectively, three or five partial height differences (p). Each partial height difference, in turn, 
involves one instrument setup and two sightings: forward and back. The standard deviation for 

each Δhi equals to σi = ±√2p × 40 × 0.02 mm/m, i.e. σi = ±√2p × 0.8 mm, where p is 3 or 5. The 

readings are assumed uncorrelated and σ0
2 = 1. 

 

 

Figure 3: Simulated leveling network.  

 
For each unknown points, there are four height difference measurements. Thus, there are n = 10 
observations, u = 4 unknowns, and n - u= 6 degrees of freedom in this simulation. The design 
matrix (A) has dimension 10 x 4 and the covariance matrix of observations has dimension
1 0 x 1 0 . Each station is involved in four height differences, so there are three redundant 
observations for the determination of each unknown.  

Here, we define a threshold power of the test of DS of γ0 = 0.80. The significance level is taken as 
α0 = 0.001 (the typically adopted value, see, e.g. Baarda, 1968), so the critical value of the χ² 
distribution for the statistic Tq=1 is 

0
K = 10.83. Here, 15,000 Monte Carlo experiments were 

defined for each observation. In each experiment are performed considering positive and 
negative outliers between 3σ and 9σ magnitude intervals (σ being the respective standard 
deviation of the observation). Table 1 shows the power of the test based on MCS for each 
observation without considering the addition of new observations: 



163                                                                                                                                                                          Rofatto, V.F., et al. 

Bulletin of Geodetic Sciences, 24(2): 152-170, Apr-Jun, 2018 

Table 1: Power of the iterative DS and misidentification rates (%) for each observation in a priori 
network configuration 

Observation (∆hi) Power of iterative DS (%) Type II Error Type III Error Over-identification 

∆h1 66.9 29.9 2.7 0.5 

∆h2 68.7 28.2 2.7 0.4 

∆h3 68.4 28.5 2.7 0.4 

∆h4 68.7 28.1 2.6 0.6 

∆h5 72.3 25.3 1.8 0.6 

∆h6 79.1 19.2 1.1 0.6 

∆h7 83.5 15.3 0.5 0.7 

∆h8 81.0 17.4 0.9 0.7 

∆h9 83.3 15.5 0.6 0.6 

∆h10 78.8 19.4 1.3 0.5 

  

Table 1 shows that the observation ∆h1 has the lowest power of the test (66.9%) for the 
simulated leveling network. In other words, among the 15,000 experiments performed using 
MCS for this observation, 10035 outliers were correctly identified. Regarding the three classes of 
misidentification rates, 4485 observations were not identified (29.9%); 405 outlying observations 
is misidentified (2.7%); and there were 75 cases of over-identification (0.5%). Figure 4 shows the 
power of the DS for the priori geodetic network configuration. It can be noted that the lowest 
power of test based on MCS (γM (∆h1) = 66.9) does not achieve the reliability criterion. Therefore, 
the leveling network must be improved.  

 

Figure 4: Power of the DS for the initial geodetic network configuration.  
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According to the proposed algorithm (summarized in the Figure 2), the next task is to add a new 
observation among those that has the lowest power of the test. In this case, a new observation is 
added in the ∆h1, since its lowest power of the test(indicated in bold in Table 1)is less than the 
quality criterion (i.e. γM (∆h1) = 66.9% < γ0 = 80%).This process is repeated until the lowest power 
of the test is greater than or equal to reliability criterion (γM > γ0).Table 2 shows the power of the 
test based on MCS for each observation. The lowest power of the test is emboldened in the 
Table 2.The addition of new measurements has substantially increased the power of the DS for 
the simulated network. It can be noted that five new observations were added to geodetic 
network in order to meet the reliability criterion. These new observations are indicated in single 
quotation marks. 
 

Table 2: Power of the test of the iterative DS (%) for α0 = 0.001 in simulated network 

Observation (∆hi) 
Iteration 

1st 2nd 3rd 4th 5th 

∆h1 79 78 80 80 80 

∆h2 72 73 80 80 80 

∆h3 68 78 80 81 81 

∆h4 70 73 74 80 81 

∆h5 75 74 75 76 81 

∆h6 81 80 82 83 84 

∆h7 83 83 84 85 85 

∆h8 83 83 84 84 84 

∆h9 83 84 84 85 85 

∆h10 78 81 82 81 82 

'∆h1' 79 79 80 80 81 

'∆h3' - 79 79 80 89 

'∆h2'
 

- - 81 80 81 

'∆h4' - - - 81 81 

'∆h5' - - - - 81 

 
Although observations between adjacent stations (1, 2, 3, 4 and 5) are more precise, the power 
of the test shows that additional observations are needed to meet the quality criteria. On the 
other hand, the observations between the non-adjacent stations located in the center of the 
network are more controllable (6, 7, 8, 9 and 10). In the latter case, it appears that the center of 
the network is the optimal location to do the observations, as can be seen in a similar way in the 
work of Horemuž and Jansson (2016) as well as Amiri-Simkooei, (2001b).The new observations 
and the power of DS associated with them are highlighted in the Figure 5. 
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Figure 5: Final geodetic network configuration. 

 

It is important to mention that the power of the test defined here as quality criteria was of 0.80. 
The user can choose another level of this probability. However, if the user increases the level of 
the power of the test, in general, it also increases the cost, since more observations must be 
needed or other equipment of better precision must be acquired to meet the quality criteria. 
Furthermore, the magnitudes of the outlier and the significance level have a direct relationship. 
The smaller the size of the outlier to be identified, the higher the level of significance should be. 
However, the user must be careful not to set a significance level and a magnitude of the outlier 
(first step of the method) that makes the design geodetic network unfeasible from the point of 
view of cost. Thus, we suggest to the user to analyze the best scenario with different levels of 
significance (e.g. Rofatto et al., 2017). The analysis of the significance level is outside the scope 
of this paper and it will be addressed in a future research. 

 

6. CONCLUSION 

  
The conclusions are highlighted in the following: 

• The proposed method to design a geodetic network is based on numerical simulation. The 
method discards the use of the observation vector of Gauss-Markov model. In fact, the only 
needs are the geometrical network configuration (given by Jacobian matrix); the uncertainty 
of the observations (given by nominal standard deviation of the equipment); and the 
magnitude intervals of the outliers. The proposed method seeks to maximize the internal 
reliability by adding new observations in the one which presents the lowest power of test 
based on MCS. This process is repeated until a sufficiently robust network is obtained. 
Therefore, it can be applied for any kind of geodetic network. 

• Here, the proposed method was applied to a closed levelling network. It was defined a 
threshold power of the test of DS of 0.80 (80%) and the significance level was taken as 0.001 
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(0.1%). 15,000 Monte Carlo experiments were defined for each observation. In each 
experiment are performed considering positive and negative outliers between 3σ and 9σ 
magnitude intervals. Results showed the needs of five additional observations between 
adjacent stations. The addition of these new observations improved the internal reliability of 
approximately 18%, i.e. it increased the probability of the ability of the measurements 
scheme to identify an outlier in the set of the observations.  
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