323 research outputs found

    Possible Signatures of a Cold-Flow Disk from MUSE using a z=1 galaxy--quasar pair towards SDSSJ1422-0001

    Get PDF
    We use a background quasar to detect the presence of circum-galactic gas around a z=0.91z=0.91 low-mass star forming galaxy. Data from the new Multi Unit Spectroscopic Explorer (MUSE) on the VLT show that the host galaxy has a dust-corrected star-formation rate (SFR) of 4.7±\pm0.2 Msun/yr, with no companion down to 0.22 Msun/yr (5 σ\sigma) within 240 kpc (30"). Using a high-resolution spectrum (UVES) of the background quasar, which is fortuitously aligned with the galaxy major axis (with an azimuth angle α\alpha of only 1515^\circ), we find, in the gas kinematics traced by low-ionization lines, distinct signatures consistent with those expected for a "cold flow disk" extending at least 12 kpc (3×R1/23\times R_{1/2}). We estimate the mass accretion rate M˙in\dot M_{\rm in} to be at least two to three times larger than the SFR, using the geometric constraints from the IFU data and the HI column density of logNHI20.4\log N_{\rm HI} \simeq 20.4 obtained from a {\it HST}/COS NUV spectrum. From a detailed analysis of the low-ionization lines (e.g. ZnII, CrII, TiII, MnII, SiII), the accreting material appears to be enriched to about 0.4 ZZ_\odot (albeit with large uncertainties: logZ/Z=0.4 ± 0.4\log Z/Z_\odot=-0.4~\pm~0.4), which is comparable to the galaxy metallicity (12+logO/H=8.7±0.212+\log \rm O/H=8.7\pm0.2), implying a large recycling fraction from past outflows. Blue-shifted MgII and FeII absorptions in the galaxy spectrum from the MUSE data reveal the presence of an outflow. The MgII and FeII doublet ratios indicate emission infilling due to scattering processes, but the MUSE data do not show any signs of fluorescent FeII* emission.Comment: 17 pages, 11 figures, in press (ApJ), minor edits after the proofs. Data available at http://muse-vlt.eu/science/j1422

    A conserved phosphorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-like1 in tomato

    Get PDF
    ETHYLENE-INSENSITIVE3/ETHYLENE-INSENSITIVE3-like (EIN3/EIL) transcription factors are important downstream components of the ethylene transduction pathway known to regulate the transcription of early ethylene-responsive genes in plants. Previous studies have shown that phosphorylation can repress their transcriptional activity by promoting protein degradation. The present study identifies a new phosphorylation region named EPR1 (EIN3/EIL phosphorylation region 1) in tomato EIL1 proteins. The functional significance of EPR1 was tested by introducing mutations in this region of the Sl-EIL1 gene and by expressing these mutated versions in transgenic tomato plants. Transient expression data and phenotypic analysis of the transgenic lines indicated that EPR1 is essential for the transcriptional activity of Sl-EIL1. Moreover, mutation in the EPR1 site that prevents phosphorylation abolishes ethylene constitutive responses normally displayed by the Sl-EIL1-overexpressing lines. Bimolecular fluorescence complementation (BiFC) studies showed that the presence of a functional phosphorylation site within EPR1 is instrumental in the dimerization of Sl-EIL1 proteins. The results illuminate a new molecular mechanism for the control of EIN3/EIL activity and propose a model where phosphorylation within the EPR1 promotes the dimerization process allowing the initiation of EIL-mediated transcription of early ethylene-regulated genes

    Soil respiratory quotient determined via barometric process separation combined with nitrogen-15 labeling

    Get PDF
    The barometric process separation (BaPS) and ¹⁵N dilution techniques were used to determine gross nitrification rates on the same soil cores from an old grassland soil. The BaPS-technique separates the O₂ consumption into that from nitrification and that from soil organic matter (SOM) respiration. The most sensitive parameter for the calculations via the BaPS technique is the respiratory quotient (RQ = ∆CO₂/∆O₂) for SOM turnover (RQSOM). Combining both methods (BaPS–¹⁵N ) allowed the determination of the RQSOM. The RQ value determined in such a way is adjusted for the influence of nitrification and denitrification, which are both characterized by totally different RQ values. The results for the grassland soil showed that 6 to 10% of O₂ was consumed by nitrification when incubated at 20°C and 0.49 g H₂O g⁻¹ soil. A set of BaPS measurements with the same soil at various temperature and moisture contents showed that up to 49% of the total O₂ consumption was due to nitrification. The calculated RQSOM values via the BaPS–¹⁵N technique presented here are more closely associated with the overall SOM turnover than the usual net RQ reported in the literature. Furthermore, the RQSOM value provides an overall indication of the decomposability and chemical characteristics of the respired organic material. Hence, it has the potential to serve as a single state index for SOM quality and therefore be a useful index for SOM turnover models based on substrate quality

    Biochar reduces the efficiency of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) mitigating N2O emissions

    Get PDF
    Among strategies suggested to decrease agricultural soil N2O losses, the use of nitrification inhibitors such as DMPP (3,4-dimethylpyrazole phosphate) has been proposed. However, the efficiency of DMPP might be affected by soil amendments, such as biochar, which has been shown to reduce N2O emissions. This study evaluated the synergic effect of a woody biochar applied with DMPP on soil N2O emissions. A incubation study was conducted with a silt loam soil and a biochar obtained from Pinus taeda at 500 degrees C. Two biochar rates (0 and 2% (w/w)) and three different nitrogen treatments (unfertilized, fertilized and fertilized + DMPP) were assayed under two contrasting soil water content levels (40% and 80% of water filled pore space (WFPS)) over a 163 day incubation period. Results showed that DMPP reduced N2O emissions by reducing ammonia-oxidizing bacteria (AOB) populations and promoting the last step of denitrification (measured by the ratio nosZI + nosZII/nirS + nirK genes). Biochar mitigated N2O emissions only at 40% WFPS due to a reduction in AOB population. However, when DMPP was applied to the biochar amended soil, a counteracting effect was observed, since the N2O mitigation induced by DMPP was lower than in control soil, demonstrating that this biochar diminishes the efficiency of the DMPP both at low and high soil water contents.This work was funded by the Spanish Government (AGL2015-64582-C3-2-R MINECO/FEDER), by the Basque Government (IT-932-16) and by the European Union (FACCE-CSA no 276610/MIT04-DESIGN-UPVASC, FACCE-CSA no 2814ERA01A and 2814ERA02A). This work is also supported by the USDA/NIFA Interagency Climate Change Grant Proposal number 2014-02114 [Project number 6657-12130-002-08I, Accession number 1003011] under the Multi-Partner Call on Agricultural Greenhouse Gas Research of the FACCE-Joint Program Initiative. Any opinions, findings, or recommendation expressed in this publication are those of the authors and do not necessarily reflect the view of the USDA. MLC was supported by a Ramon y Cajal contract from the Spanish Ministry of Economy and Competitiveness and thanks Fundacion Seneca for financing the project 19281/PI/14

    Developmental toxicity and brain aromatase induction by high genistein concentrations in zebrafish embryos

    Get PDF
    Genistein is a phytoestrogen found at a high level in soybeans. In vitro and in vivo studies showed that high concentrations of genistein caused toxic effects. This study was designed to test the feasibility of zebrafish embryos for evaluating developmental toxicity and estrogenic potential of high genistein concentrations. The zebrafish embryos at 24 h post-fertilization were exposed to genistein (1 × 10−4 M, 0.5 × 10−4 M, 0.25 × 10−4 M) or vehicle (ethanol, 0.1%) for 60 h. Genistein-treated embryos showed decreased heart rates, retarded hatching times, decreased body length, and increased mortality in a dose-dependent manner. After 0.25 × 10−4 M genistein treatment, malformations of survived embryos such as pericardial edema, yolk sac edema, and spinal kyphosis were also observed. TUNEL assay results showed apoptotic DNA fragments in brain. This study also confirmed the estrogenic potential of genistein by EGFP expression in the brain of the mosaic reporter zebrafish embryos. This study first demonstrated that high concentrations of genistein caused a teratogenic effect on zebrafish embryos and confirmed the estrogenic potential of genistein in mosaic reporter zebrafish embryos

    Methane exchange in a boreal forest estimated by gradient method

    Get PDF
    Forests are generally considered to be net sinks of atmospheric methane (CH4) because of oxidation by methanotrophic bacteria in well-aerated forests soils. However, emissions from wet forest soils, and sometimes canopy fluxes, are often neglected when quantifying the CH4 budget of a forest. We used a modified Bowen ratio method and combined eddy covariance and gradient methods to estimate net CH4 exchange at a boreal forest site in central Sweden. Results indicate that the site is a net source of CH4. This is in contrast to soil, branch and leaf chamber measurements of uptake of CH4. Wetter soils within the footprint of the canopy are thought to be responsible for the discrepancy. We found no evidence for canopy emissions per se. However, the diel pattern of the CH4 exchange with minimum emissions at daytime correlated well with gross primary production, which supports an uptake in the canopy. More distant source areas could also contribute to the diel pattern; their contribution might be greater at night during stable boundary layer conditions
    corecore