148 research outputs found

    Double-crystal spectrometer measurements of lattice parameters and X-ray topography on heterojunctions GaAs-AlxGa1−xAs

    Get PDF
    Heterojunctions GaAs-AlxGa1-xAs involved in the elaboration of IR laser diodes have been studied. The difference in lattice parameter between the GaAs substrate and the aluminum-substituted epitaxic layer AlxGa1-xAs has been measured accurately on a double-crystal spectrometer for a series of compositions. These data coupled with radius of curvature determination have permitted calculation of the stress in the layer and the bulk lattice parameter of AlxGa1-xAs. Characterization of the defects introduced during the liquid-phase epitaxy has been performed by X-ray topography

    A chick model for the mechanisms of mustard gas neurobehavioral teratogenicity

    Get PDF
    The chemical warfare blistering agent, sulfur mustard (SM), is a powerful mutagen and carcinogen. Due to its similarity to the related chemotherapy agents nitrogen mustard (mechlorethamine), it is expected to act as a developmental neurotoxicant. The present study was designed to establish a chick model for the mechanisms of SM on neurobehavioral teratogenicity, free of confounds related to mammalian maternal effects. Chicken eggs were injected with SM at a dose range of 0.0017-17.0 mug/kg of egg, which is below the threshold for clysmorpholog, on incubation days (ID) 2 and 7, and then tests were conducted posthatching. Exposure to SM elicited significant deficits in the intermedial part of the hyperstriatum ventrale (IMHV)-related imprinting behavior. Parallel decreases were found in the level of membrane PKCgamma in the IMHV, while eliciting no net change in cytosolic PKCgamma. The chick, thus, provides a suitable model for the rapid evaluation of SM behavioral teratogenicity and elucidation of the mechanisms underlying behavioral anomalies. The results obtained, using a model that controls for confounding maternal effects, may be replicated in the mammalian model and provide the groundwork for studies designed to offset or reverse the SM-induced neurobehavioral defects in both avian and mammals. (C) 2004 Elsevier Inc. All tights reserved.</p

    Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa san ai

    Get PDF
    Pseudomonas aeruginosa san ai is a promising candidate for bioremediation of cadmium pollution, as it resists a high concentration of up to 7.2 mM of cadmium. Leaving biomass of P. aeruginosa san ai exposed to cadmium has a large biosorption potential, implying its capacity to extract heavy metal from contaminated medium. In the present study, we investigated tolerance and accumulation of cadmium on protein level by shotgun proteomics approach based on liquid chromatography and tandem mass spectrometry coupled with bioinformatics to identify proteins. Size exclusion chromatography was used for protein prefractionation to preserve native forms of metalloproteins and protein complexes. Using this approach a total of 60 proteins were observed as up-regulated in cadmium-amended culture. Almost a third of the total numbers of up-regulated were metalloproteins. Particularly interesting are denitrification proteins which are over expressed but not active, suggesting their protective role in conditions of heavy metal exposure. P. aeruginosa san ai developed a complex mechanism to adapt to cadmium, based on: extracellular biosorption, bioaccumulation, the formation of biofilm, controlled siderophore production, enhanced respiration and modified protein profile. An increased abundance of proteins involved in: cell energy metabolism, including denitrification proteins; amino acid metabolism; cell motility and posttranslational modifications, primarily based on thiol-disulfide exchange, were observed. Enhanced oxygen consumption of biomass in cadmium-amended culture versus control was found. Our results signify that P. aeruginosa san ai is naturally well equipped to overcome and survive high doses of cadmium and, as such, has a great potential for application in bioremediation of cadmium polluted sites.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3179

    The Candida rugosa lipase adsorbed onto titania as nano biocatalyst with improved thermostability and reuse potential in aqueous and organic media

    Get PDF
    The immobilization of Candida rugosa lipase by adsorption was performed onto commercial titania powder (Degussa P25). The change of titania particles surface was diagnosed by means of FTIR and FESEM analysis, as well as by shift of zeta potential value towards that of lipase. A detailed study of the effect of immobilization on enzyme kinetic, temperature stability, as well as on potential for its reuse in aqueous organic media was undertaken. Immobilization of lipase altered enzyme affinity toward substrates with different length of carbon chain in hydrolytic reaction. The Vmax value decreased 2–8-fold, where major constraint was registered for the ester containing the longest carbon chain. Thermostability of lipase improved more than 7-fold at 60 °C. Significant potential for reuse in water solutions was also found after immobilization. In cyclohexane immobilized lipase catalyzed synthesis of amyl octanoate by ping-pong bi–bi mechanism with inhibition by amyl alcohol. Obtained kinetic constants were Vmax = 26.4 μmol min−1, KAc = 0.52 mol/L, KAl = 0.2 mol/L and Ki,Al = 0.644 mol/L. Esterification activity remained 60% after 5 reuse cycles in cyclohexane indicating moderate reuse stability. © 2017 Elsevier B.V.This is peer-reviewed version of the following article: Izrael Živković, L. T.; Živković, L. S.; Beškoski, V. P.; Gopčević, K. R.; Jokić, B. M.; Radosavljević, D. S.; Karadžić, I. M. The Candida Rugosa Lipase Adsorbed onto Titania as Nano Biocatalyst with Improved Thermostability and Reuse Potential in Aqueous and Organic Media. Journal of Molecular Catalysis B: Enzymatic 2016, 133, S533–S542. [https://doi.org/10.1016/j.molcatb.2017.06.001]Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3649

    Neuroprotective Effect of Transplanted Human Embryonic Stem Cell-Derived Neural Precursors in an Animal Model of Multiple Sclerosis

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) is an immune mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination and suppress the inflammatory process. METHODS: We transplanted human embryonic stem cells (hESC)-derived early multipotent neural precursors (NPs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted NPs on the functional and pathological manifestations of the disease. RESULTS: Transplanted hESC-derived NPs significantly reduced the clinical signs of EAE. Histological examination showed migration of the transplanted NPs to the host white matter, however, differentiation to mature oligodendrocytes and remyelination were negligible. Time course analysis of the evolution and progression of CNS inflammation and tissue injury showed an attenuation of the inflammatory process in transplanted animals, which was correlated with the reduction of both axonal damage and demyelination. Co-culture experiments showed that hESC-derived NPs inhibited the activation and proliferation of lymph node-derived T cells in response to nonspecific polyclonal stimuli. CONCLUSIONS: The therapeutic effect of transplantation was not related to graft or host remyelination but was mediated by an immunosuppressive neuroprotective mechanism. The attenuation of EAE by hESC-derived NPs, demonstrated here, may serve as the first step towards further developments of hESC for cell therapy in MS
    corecore