8 research outputs found

    Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall

    Get PDF
    Research Areas: Science & TechnologyABSTRACT - In this study, a rational combination of 200 pre-selected Carbohydrate-Active enzymes (CAZymes) and sulfatases were tested, individually or combined, according to their ability to degrade Chlorella vulgaris cell wall to access its valuable nutritional compounds. The disruption of microalgae cell walls by a four enzyme mixture (Mix) in comparison with the control, enabled to release up to 1.21g/L of reducing sugars (p<0.001), led to an eight-fold increase in oligosaccharides release (p<0.001), and reduced the fuorescence intensity by 47% after staining with Calcofuor White (p<0.001). The Mix treatment was successful in releasing proteins (p<0.001), some MUFA (p<0.05), and the benefcial 18:3n-3 fatty acid (p0.05), total carotenoids were increased in the supernatant (p<0.05) from the Mix treatment, relative to the control. Taken together, these results indicate that this four-enzyme Mix displays an efective capacity to degrade C. vulgaris cell wall. Thus, these enzymes may constitute a good approach to improve the bioavailability of C. vulgaris nutrients for monogastric diets, in particular, and to facilitate the cost-efective use of microalgae by the feed industry, in general.info:eu-repo/semantics/publishedVersio

    Asymmetric Hydrogenation of Heteroarenes and Arenes

    No full text

    Pharmaceutical impurities and degradation products: Uses and applications of NMR techniques

    No full text
    Current standards and regulations demand the pharmaceutical industry not only to produce highly pure drug substances, but to achieve a thorough understanding of the impurities accompanying their manufactured drug substances and products. These challenges have become important goals of process chemistry and have steadily stimulated the search of impurities after accelerated or forced degradation procedures. As a result, impurity profiling is one of the most attractive, active and relevant fields of modern pharmaceutical analysis. This activity includes the identification, structural elucidation and quantitative determination of impurities and degradation products in bulk drugs and their pharmaceutical formulations. Nuclear magnetic resonance (NMR) spectroscopy has evolved into an irreplaceable approach for pharmaceutical quality assessment, currently playing a critical role in unequivocal structure identification as well as structural confirmation (qualitative detection), enabling the understanding of the underlying mechanisms of the formation of process and/or degradation impurities. NMR is able to provide qualitative information without the need of standards of the unknown compounds and multiple components can be quantified in a complex sample without previous separation. When coupled to separative techniques, the resulting hyphenated methodologies enhance the analytical power of this spectroscopy to previously unknown levels. As a result, and by enabling the implementation of rational decisions regarding the identity and level of impurities, NMR contributes to the goal of making better and safer medicines. Herein are discussed the applications of NMR spectroscopy and its hyphenated derivate techniques to the study of a wide range pharmaceutical impurities. Details on the advantages and disadvantages of the methodology and well as specific challenges with regards to the different analytical problems are also presented.Fil: Maggio, Ruben Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Calvo, Natalia Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Vignaduzzo, Silvana Edit. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Kaufman, Teodoro Saul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentin

    Functions, Therapeutic Applications, and Synthesis of Retinoids and Carotenoids

    No full text

    Pharmaceutical impurities and degradation products: Uses and applications of NMR techniques

    No full text
    corecore