838 research outputs found

    Adhesive and conformational behaviour of mycolic acid monolayers

    Get PDF
    We have studied the pH-dependent interaction between mycolic acid (MA) monolayers and hydrophobic and hydrophilic surfaces using molecular (colloidal probe) force spectroscopy. In both cases, hydrophobic and hydrophilic monolayers (prepared by Langmuir-Blodgett and Langmuir-Schaefer deposition on silicon or hydrophobized silicon substrates, respectively) were studied. The force spectroscopy data, fitted with classical DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory to examine the contribution of electrostatic and van der Waals forces, revealed that electrostatic forces are the dominant contribution to the repulsive force between the approaching colloidal probe and MA monolayers. The good agreement between data and the DLVO model suggest that beyond a few nm away from the surface, hydrophobic, hydration, and specific chemical bonding are unlikely to contribute to any significant extent to the interaction energy between the probe and the surface. The pH-dependent conformation of MA molecules in the monolayer at the solid-liquid interface was studied by ellipsometry, neutron reflectometry, and with a quartz crystal microbalance. Monolayers prepared by the Langmuir-Blodgett method demonstrated a distinct pH-responsive behaviour, while monolayers prepared by the Langmuir-Schaefer method were less sensitive to pH variation. It was found that the attachment of water molecules plays a vital role in determining the conformation of the MA monolayers. (C) 2010 Elsevier B.V. All rights reserved

    Les Habitats d’IntĂ©rĂȘt Communautaire de Wallonie : Introduction gĂ©nĂ©rale

    Full text link
    La publication des « Habitats d’IntĂ©rĂȘt Communautaire de Wallonie » (HICW) est le rĂ©sultat d’une collaboration entre la Direction de la Nature et de l’Eau du DĂ©partement de l’Étude du Milieu Naturel et Agricole (SPW-Agriculture, Ressources naturelles et Environnement) et plusieurs services universitaires en appui scientifique Ă  la mise en Ɠuvre du rĂ©seau Natura 2000 en Wallonie

    Long-term nutrient enrichment, mowing, and ditch drainage interact in the dynamics of a wetland plant community.

    Get PDF
    This work was supported by NSF grants to Carol Goodwillie (DUE 126824 and DEB 1049291) and Ariane Peralta (DEB 1845845). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Fertilization studies have elucidated basic principles of the role of nutrients in shaping plant communities and demonstrated the potential effects of anthropogenic nutrient deposition. Yet less is known about how these effects are mediated by interacting ecological factors, particularly in nutrient-poor wetland habitats. In a long-term experiment in a coastal plain wetland, we examined how fertilization and mowing affected the diversity and composition of a plant community as it reestablished after major disturbance. A drainage ditch in proximity to the experimental plots allowed us also to consider the influence of hydrology and its interactions with nutrient addition. Fertilization decreased species richness, with wetland specialist species showing especially great losses, and several lines of evidence suggest that the effect was mediated by competition for light. Altered hydrology via ditch drainage had effects that were similar to fertilization, with more rapidly draining plots showing lower diversity and decreased abundance of wetland species. Plant community diversity and dynamics were influenced by complex interactions between fertilization, disturbance, and hydrology. The negative effect of fertilization on species richness was initially mitigated by mowing, but in later years was more evident in mowed than in unmowed plots. In the absence of disturbance, nutrient addition increased the rate of transition to primarily woody communities. Similarly, drained plots experienced increased rates of succession compared to wetter plots. Our results suggest that these interactions need to be considered to understand the potential effects of anthropogenic nutrient addition and hydrologic alterations to wetland ecosystems.ECU Open Access Publishing Support Fun

    Are Amphipod invaders a threat to the regional biodiversity? Conservation prospects for the Loire River

    Get PDF
    The impact of invasions on local biodiversity is well established, but their impact on regional biodiversity has so far been only sketchily documented. To address this question, we studied the impact at various observation scales (ranging from the microhabitat to the whole catchment) of successive arrivals of non-native amphipods on the amphipod assemblage of the Loire River basin in France. Amphipod assemblages were studied at 225 sites covering the whole Loire catchment. Non-native species were dominant at all sites in the main channel of the Loire River, but native species were still present at most of the sites. We found that the invaders have failed to colonize most of tributaries of the Loire River. At the regional scale, we found that since the invaders first arrived 25 years ago, the global amphipod diversity has increased by 33% (from 8 to 12 species) due to the arrival of non-native species. We discuss the possibility that the lack of any loss of biodiversity may be directly linked to the presence of refuges at the microhabitat scale in the Loire channel and in the tributaries, which invasive species have been unable to colonize. The restoration of river quality could increase the number of refuges for native species, thus reducing the impact of invader

    Low-productivity boreal forests have high conservation value for lichens

    Get PDF
    1. Land set aside for preservation of biodiversity often has low productivity. As biodiversity generally increases with productivity, due to higher or more diverse availability of resources, this implies that some of the biodiversity may be left unprotected. Due to a lack of knowledge on the species diversity and conservation value of low-productivity habitats, the consequences of the biased allocation of low-productivity land for set-asides are unknown. 2. We examined the conservation value of boreal low-productivity forests (potential tree growth <1 m(3) ha(-1) year(-1)) by comparing assemblages of tree- and deadwood-dwelling lichens and forest stand structure between productive and low-productivity forest stands. We surveyed 84 Scots pine-dominated stands in three regions in Sweden, each including four stand types: two productive (managed and unman-aged) and two low-productivity stands (on mires and on thin, rocky soils). 3. Lichen species richness was the highest in low-productivity stands on thin soil, which had similar amounts and diversity of resources (living trees and dead wood) to productive unmanaged stands. Stands in low-productivity mires, which had low abundance of living trees and dead wood, hosted the lowest lichen richness. Lichen species composition differed among stand types, but none of them hosted unique species. The differences in both species richness and composition were more pronounced in northern than in southern Sweden, likely due to shorter history of intensive forestry. 4. Synthesis and applications. Boreal low-productivity forests can have as high conservation value as productive forests, which should be reflected in conservation strategies. However, their value is far from uniform, and conservation planning should acknowledge this variation and not treat all low-productivity forests as a uniform group. Some types of low-productivity forest (e.g. on rocky soil) are more valuable than others (e.g. on mires), and should thus be prioritized in conservation. It is also important to consider the landscape context: low-productivity forests may have higher value in landscapes where high-productivity forests are highly influenced by forestry. Finally, although low-productivity forests can be valuable for some taxa, productive forests may still be important for other taxa

    Resilience and Alternative Stable States After Desert Wildfires

    Get PDF
    Improving models of community change is a fundamental goal in ecology and has renewed importance during global change and increasing human disturbance of the biosphere. Using the Mojave Desert (southwestern United States) as a model system, invaded by nonnative plants and subject to wildfire disturbances, we examined models of resilience, alternative stable states, and convergent-divergent trajectories for 36 yr of plant community change after 31 wildfires in communities dominated by the native shrubs Larrea tridentata or Coleogyne ramosissima. Perennial species richness on average was fully resilient within 23 yr after disturbance in both community types. Perennial cover was fully resilient within 25 yr in the Larrea community, but recovery was projected to require 52 yr in the Coleogyne community. Species composition shifts were persistent, and in the Coleogyne community, the projected compositional recovery time of 550 yr and increasing resembled a deflected trajectory toward potential alternative states. Disturbed sites contained a perennial species composition of predominately short-statured forbs, subshrubs, and grasses, contrasting with the larger-statured shrub and tree structure of undisturbed sites. Auxiliary data sets characterizing species recruitment, annual plants including nonnative grasses, biocrust communities, and soils showed persistent differences between disturbed and undisturbed sites consistent with positive feedbacks potentially contributing to alternative stable states. Resprouting produced limited resilience for the large shrubs L. tridentata and Yucca spp. important to population persistence but did not forestall long-term reduced abundance of the species. The nonnative annual grass Bromus rubens increased on disturbed sites over time, suggesting persistently abundant nonnative plant fuels and reburn potential. Biocrust cover on disturbed sites was half and species richness a third of amounts on undisturbed sites. Soil nitrogen was 30% greater on disturbed sites and no significant trend was evident for it to decline on even the oldest burns. Disturbed desert plant communities simultaneously supported all three models of resilience, alternative stable states, and convergent-divergent trajectories among community measures (e.g., species richness, composition), timeframes since disturbance, and spatial resolutions. Accommodating expression within ecosystems of multiple models, including those opposing each other, may help broaden theoretical models of ecosystem change

    A weighting method to improve habitat association analysis: tested on British carabids

    Get PDF
    Analysis of species’ habitat associations is important for biodiversity conservation and spatial ecology. The original phi coefficient of association is a simple method that gives both positive and negative associations of individual species with habitats. The method originates in assessing the association of plant species with habitats, sampled by quadrats. Using this method for mobile animals creates problems as records often have imprecise locations, and would require either using only records related to a single habitat or arbitrarily choosing a single habitat to assign. We propose and test a new weighted version of the index that retains more records, which improves association estimates and allows assessment of more species. It weights habitats that lie within the area covered by the species record with their certainty level, in our case study, the proportion of the grid cell covered by that habitat. We used carabid beetle data from the National Biodiversity Network atlas and CEH Land Cover Map 2015 across Great Britain to compare the original method with the weighted version. We used presence‐only data, assigning species absences using a threshold based on the number of other species found at a location, and conducted a sensitivity analysis of this threshold. Qualitative descriptions of habitat associations were used as independent validation data. The weighted index allowed the analysis of 52 additional species (19% more) and gave results with as few as 50 records. For the species we could analyse using both indices, the weighted index explained 70% of the qualitative validation data compared to 68% for the original, indicating no accuracy loss. The weighted phi coefficient of association provides an improved method for habitat analysis giving information on preferred and avoided habitats for mobile species that have limited records, and can be used in modelling and analysis that directs conservation policy and practice

    Atomic force microscopy-based mechanobiology

    Get PDF
    Mechanobiology emerges at the crossroads of medicine, biology, biophysics and engineering and describes how the responses of proteins, cells, tissues and organs to mechanical cues contribute to development, differentiation, physiology and disease. The grand challenge in mechanobiology is to quantify how biological systems sense, transduce, respond and apply mechanical signals. Over the past three decades, atomic force microscopy (AFM) has emerged as a key platform enabling the simultaneous morphological and mechanical characterization of living biological systems. In this Review, we survey the basic principles, advantages and limitations of the most common AFM modalities used to map the dynamic mechanical properties of complex biological samples to their morphology. We discuss how mechanical properties can be directly linked to function, which has remained a poorly addressed issue. We outline the potential of combining AFM with complementary techniques, including optical microscopy and spectroscopy of mechanosensitive fluorescent constructs, super-resolution microscopy, the patch clamp technique and the use of microstructured and fluidic devices to characterize the 3D distribution of mechanical responses within biological systems and to track their morphology and functional state.Peer ReviewedPostprint (published version

    Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Get PDF
    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5ÎČ1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications
    • 

    corecore