103 research outputs found

    Assessment of long-range correlation in animal behaviour time series: the temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus)

    Get PDF
    The aim of this study was to evaluate the performance of a classical method of fractal analysis, Detrended Fluctuation Analysis (DFA), in the analysis of the dynamics of animal behavior time series. In order to correctly use DFA to assess the presence of long-range correlation, previous authors using statistical model systems have stated that different aspects should be taken into account such as: 1) the establishment by hypothesis testing of the absence of short term correlation, 2) an accurate estimation of a straight line in the log-log plot of the fluctuation function, 3) the elimination of artificial crossovers in the fluctuation function, and 4) the length of the time series. Taking into consideration these factors, herein we evaluated the presence of long-range correlation in the temporal pattern of locomotor activity of Japanese quail ({\sl Coturnix coturnix}) and mosquito larva ({\sl Culex quinquefasciatus}). In our study, modeling the data with the general ARFIMA model, we rejected the hypothesis of short range correlations (d=0) in all cases. We also observed that DFA was able to distinguish between the artificial crossover observed in the temporal pattern of locomotion of Japanese quail, and the crossovers in the correlation behavior observed in mosquito larvae locomotion. Although the test duration can slightly influence the parameter estimation, no qualitative differences were observed between different test durations

    Focal osteoporosis defects play a key role in hip fracture

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: Hip fractures are mainly caused by accidental falls and trips, which magnify forces in well-defined areas of the proximal femur. Unfortunately, the same areas are at risk of rapid bone loss with ageing, since they are relatively stress-shielded during walking and sitting. Focal osteoporosis in those areas may contribute to fracture, and targeted 3D measurements might enhance hip fracture prediction. In the FEMCO case-control clinical study, Cortical Bone Mapping (CBM) was applied to clinical computed tomography (CT) scans to define 3D cortical and trabecular bone defects in patients with acute hip fracture compared to controls. Direct measurements of trabecular bone volume were then made in biopsies of target regions removed at operation. METHODS\textbf{METHODS}: The sample consisted of CT scans from 313 female and 40 male volunteers (158 with proximal femoral fracture, 145 age-matched controls and 50 fallers without hip fracture). Detailed Cortical Bone Maps (c.5580 measurement points on the unfractured hip) were created before registering each hip to an average femur shape to facilitate statistical parametric mapping (SPM). Areas where cortical and trabecular bone differed from controls were visualised in 3D for location, magnitude and statistical significance. Measures from the novel regions created by the SPM process were then tested for their ability to classify fracture versus control by comparison with traditional CT measures of areal Bone Mineral Density (aBMD). In women we used the surgical classification of fracture location ('femoral neck' or 'trochanteric') to discover whether focal osteoporosis was specific to fracture type. To explore whether the focal areas were osteoporotic by histological criteria, we used micro CT to measure trabecular bone parameters in targeted biopsies taken from the femoral heads of 14 cases. RESULTS\textbf{RESULTS}: Hip fracture patients had distinct patterns of focal osteoporosis that determined fracture type, and CBM measures classified fracture type better than aBMD parameters. CBM measures however improved only minimally on aBMD for predicting any hip fracture and depended on the inclusion of trabecular bone measures alongside cortical regions. Focal osteoporosis was confirmed on biopsy as reduced sub-cortical trabecular bone volume. CONCLUSION\textbf{CONCLUSION}: Using 3D imaging methods and targeted bone biopsy, we discovered focal osteoporosis affecting trabecular and cortical bone of the proximal femur, among men and women with hip fracture.Arthritis Research UK (grant no. ARC17822) and Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre

    Effect of Trends on Detrended Fluctuation Analysis

    Get PDF
    Detrended fluctuation analysis (DFA) is a scaling analysis method used to estimate long-range power-law correlation exponents in noisy signals. Many noisy signals in real systems display trends, so that the scaling results obtained from the DFA method become difficult to analyze. We systematically study the effects of three types of trends -- linear, periodic, and power-law trends, and offer examples where these trends are likely to occur in real data. We compare the difference between the scaling results for artificially generated correlated noise and correlated noise with a trend, and study how trends lead to the appearance of crossovers in the scaling behavior. We find that crossovers result from the competition between the scaling of the noise and the ``apparent'' scaling of the trend. We study how the characteristics of these crossovers depend on (i) the slope of the linear trend; (ii) the amplitude and period of the periodic trend; (iii) the amplitude and power of the power-law trend and (iv) the length as well as the correlation properties of the noise. Surprisingly, we find that the crossovers in the scaling of noisy signals with trends also follow scaling laws -- i.e. long-range power-law dependence of the position of the crossover on the parameters of the trends. We show that the DFA result of noise with a trend can be exactly determined by the superposition of the separate results of the DFA on the noise and on the trend, assuming that the noise and the trend are not correlated. If this superposition rule is not followed, this is an indication that the noise and the superimposed trend are not independent, so that removing the trend could lead to changes in the correlation properties of the noise.Comment: 20 pages, 16 figure

    Characterization of Sleep Stages by Correlations of Heartbeat Increments

    Full text link
    We study correlation properties of the magnitude and the sign of the increments in the time intervals between successive heartbeats during light sleep, deep sleep, and REM sleep using the detrended fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong during deep sleep, weaker during light sleep and even weaker during REM sleep. In contrast, we find long-range positive correlations in the magnitude time series, which are strong during REM sleep and weaker during light sleep. We observe uncorrelated behavior for the magnitude during deep sleep. Since the magnitude series relates to the nonlinear properties of the original time series, while the signs series relates to the linear properties, our findings suggest that the nonlinear properties of the heartbeat dynamics are more pronounced during REM sleep. Thus, the sign and the magnitude series provide information which is useful in distinguishing between the sleep stages.Comment: 7 pages, 4 figures, revte

    Fractal Analysis of River Flow Fluctuations (with Erratum)

    Get PDF
    We use some fractal analysis methods to study river flow fluctuations. The result of the Multifractal Detrended Fluctuation Analysis (MF-DFA) shows that there are two crossover timescales at s1Ă—âˆŒ12s_{1\times}\sim12 and s2Ă—âˆŒ130s_{2\times}\sim130 months in the fluctuation function. We discuss how the existence of the crossover timescales are related to a sinusoidal trend. The first crossover is due to the seasonal trend and the value of second ones is approximately equal to the well known cycle of sun activity. Using Fourier detrended fluctuation analysis, the sinusoidal trend is eliminated. The value of Hurst exponent of the runoff water of rivers without the sinusoidal trend shows a long range correlation behavior. For the Daugava river the value of Hurst exponent is 0.52±0.010.52\pm0.01 and also we find that these fluctuations have multifractal nature. Comparing the MF-DFA results for the remaining data set of Daugava river to those for shuffled and surrogate series, we conclude that its multifractal nature is almost entirely due to the broadness of probability density function.Comment: 13 pages, 10 figures, V2: Added comments, references and one more figure, improved numerical calculations with new version of data, accepted for publication in Physica A: Statistical Mechanics and its Applications. The version with Erratum contains some notes concerning Ref. [58

    Exploring meteorological conditions and human health impacts during two dust storm events in Northern Cape province, South Africa: Findings and lessons learnt

    Get PDF
    Dust storms are meteorological hazards associated with several adverse health impacts including eye irritations, respiratory and cardiovascular disorders, and vehicular road accidents due to poor visibility. This study investigated relations between admissions from a large, public hospital that serves people living in Northern Cape and Free State provinces, South Africa during 2011 to 2017, and meteorological variables (temperature and air quality) during two dust storms, one in October 2014 (spring) and the second in January 2016 (summer), identified from the media as no repository of such events exists for South Africa. Distributed nonlinear lag analysis and wavelet transform analysis were applied to explore the relationships between hospital admissions for respiratory and cardiovascular diseases, eye irritation, and motor vehicle accidents; maximum temperature, and two air quality ‘proxy measures,’ aerosol optical depth and Ångström exponent, were used as groundbased air quality data were unavailable. Eye irritation was the most common dust-related hospital admission after both dust storm events. No statistically significant changes in admissions of interest occurred at the time of the two dust storm events, using either of the statistical methods. Several lessons were learnt. For this type of study, ground-based air quality and local wind data are required; alternative statistical methods of analysis should be considered; and a central dust storm repository would help analyze more than two events. Future studies in South Africa are needed to develop a baseline for comparison of future dust storm events and their impacts on human health.The South African Medical Research Councilhttps://www.mdpi.com/journal/atmosphereGeography, Geoinformatics and MeteorologySchool of Health Systems and Public Health (SHSPH

    Thermal Resonance in Signal Transmission

    Get PDF
    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.Comment: To appear in Phys. Rev.

    Solutions of ionic liquids with diverse aliphatic and aromatic solutes – Phase behavior and potentials for applications:A review article

    Get PDF
    This article principally reviews our research related to liquid–liquid and solid–liquid phase behavior of imidazolium- and phosphonium-based ionic liquids, mainly having bistriflamide ([NTf2]−) or triflate ([OTf]−) anions, with several aliphatic and aromatic solutes (target molecules). The latter include: (i) diols and triols: 1,2-propanediol, 1,3-propanediol and glycerol; (ii) polymer poly(ethylene glycol) (PEG): average molecular mass 200, 400 and 2050 – PEG200 (liquid), PEG400 (liquid) and PEG2050 (solid), respectively; (iii) polar aromatic compounds: nicotine, aniline, phenolic acids (vanillic, ferulic and caffeic acid,), thymol and caffeine and (iv) non-polar aromatic compounds (benzene, toluene, p-xylene). In these studies, the effects of the cation and anion, cation alkyl chain and PEG chain lengths on the observed phase behaviors were scrutinized. Thus, one of the major observations is that the anion – bistriflamide/triflate – selection usually had strong, sometimes really remarkable effects on the solvent abilities of the studied ionic liquids. Namely, in the case of the hydrogen-bonding solutes, the ionic liquids with the triflate anion generally exhibited substantially higher solubility than those having the bistriflamide anion. Nevertheless, with the aromatic compounds the situation was the opposite – in most of the cases it was the bistriflamide anion that favoured solubility. Moreover, our other studies confirmed the ability of PEG to dissolve both polar and non-polar aromatic compounds. Therefore, two general possibilities of application of alternative, environmentally acceptable, solvents of tuneable solvent properties appeared. One is to use homogeneous mixtures of two ionic liquids having [NTf2]− and [OTf]− anions as mixed solvents. The other, however, envisages the application of homogeneous and heterogeneous (PEG + ionic liquid) solutions as tuneable solvents for aromatic solutes. Such mixed solvents have potential applications in separation of the aforesaid target molecules from their aqueous solutions or in extraction from original matrices. From the fundamental point of view the phase equilibrium studies reviewed herein and the diversity of the pure compounds – ionic liquids and target molecules – represent a good base for the discussion of interactions between the molecules that exist in the studied solutions
    • 

    corecore