Detrended fluctuation analysis (DFA) is a scaling analysis method used to
estimate long-range power-law correlation exponents in noisy signals. Many
noisy signals in real systems display trends, so that the scaling results
obtained from the DFA method become difficult to analyze. We systematically
study the effects of three types of trends -- linear, periodic, and power-law
trends, and offer examples where these trends are likely to occur in real data.
We compare the difference between the scaling results for artificially
generated correlated noise and correlated noise with a trend, and study how
trends lead to the appearance of crossovers in the scaling behavior. We find
that crossovers result from the competition between the scaling of the noise
and the ``apparent'' scaling of the trend. We study how the characteristics of
these crossovers depend on (i) the slope of the linear trend; (ii) the
amplitude and period of the periodic trend; (iii) the amplitude and power of
the power-law trend and (iv) the length as well as the correlation properties
of the noise. Surprisingly, we find that the crossovers in the scaling of noisy
signals with trends also follow scaling laws -- i.e. long-range power-law
dependence of the position of the crossover on the parameters of the trends. We
show that the DFA result of noise with a trend can be exactly determined by the
superposition of the separate results of the DFA on the noise and on the trend,
assuming that the noise and the trend are not correlated. If this superposition
rule is not followed, this is an indication that the noise and the superimposed
trend are not independent, so that removing the trend could lead to changes in
the correlation properties of the noise.Comment: 20 pages, 16 figure