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Abstract

The aim of this study was to evaluate the performance of a classical method of fractal
analysis, Detrended Fluctuation Analysis (DFA), in the analysis of the dynamics of animal
behavior time series. In order to correctly use DFA to assess the presence of long-range
correlation, previous authors using statistical model systems have stated that different as-
pects should be taken into account such as: 1) the establishment by hypothesis testing of the
absence of short term correlation, 2) an accurate estimation of a straight line in the log-log
plot of the fluctuation function, 3) the elimination of artificial crossovers in the fluctuation
function, and 4) the length of the time series. Taking into consideration these factors, herein
we evaluated the presence of long-range correlation in the temporal pattern of locomotor
activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus).
In our study, modeling the data with the general ARFIMA model, we rejected the hypoth-
esis of short range correlations (d=0) in all cases. We also observed that DFA was able to
distinguish between the artificial crossover observed in the temporal pattern of locomotion
of Japanese quail, and the crossovers in the correlation behavior observed in mosquito larvae
locomotion. Although the test duration can slightly influence the parameter estimation, no
qualitative differences were observed between different test durations.
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Maŕıa A. Perillo), rmarin@efn.uncor.edu (Raúl H. Maŕın)
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1. Introduction

Fractal analysis, such as Detrended Fluctuation Analysis (DFA), has successfully been
applied in biology to such diverse fields of interest such as DNA [1], heart rate dynamics [2,
3], neuronal discharges [4], human gait [2, 5, 6], and animal behavior [7-12]. In particular,
fractal analysis has been used to evaluate the temporal dynamics of animal behavior in a wide
variety of situations and species, ranging from the swimming patterns of Copepoda [13] to
social behavior of chimpanzees [7] and even human walking patterns [2, 5, 6]. Various animal
behaviors have been shown to present long-range correlations (i.e. for large time lags, the
autocorrelation function of such long-memory processes decays according to a power-law and
hence exhibits scaling with a characteristic scaling exponent [14], see below). In this context,
DFA has emerged as an effective tool to measure the temporal organizational complexity of
animal behavior [15, 16], due mainly to the facts that it could be applied to non stationary
time series and because it is able to eliminate trends in data. For example, DFA has been
found useful to detect subtle changes in behavioral patterns due to sublethal doses of the
toxic compound [17], or stressful events [18-20] that could go undetected by conventional
behavioral analyses which are often limited to measures of the mean duration or frequency
of particular behaviors [10].

Although DFA is used to evaluate temporal patterns of animal behavior, there are some
important considerations that must be taken into account for the correct interpretation
of results. It is crucial to understand the intrinsic dynamics of the system under study
when applying DFA. First, it should be considered that one of the common challenges is
the existence of crossovers in the fluctuation function (i.e., a change in the value of α for
different ranges of scales) [4, 21]. A crossover may arise from actual changes in the correlation
properties of the signal at different time scales (i.e., two levels of complexity), or from trends
(a smooth and monotonic or slowly oscillating pattern caused by external effects) that were
not correctly eliminated by the DFA [22, 23]. The existence of trends in time series generated
by biological systems is very common and almost unavoidable [22]. For this reason, efforts
should be made to systematically study the trends in time series data (for complete review
see Hu et al. [22]; Kantelhardt et al. [23]). However, most of the biological studies that use
DFA do not appear to consider the presence of trends of orders higher than one in their time
series.

Second, Maraun et al. [14] proposed that when using DFA, long-memory should not
be assumed a priori but must be established. To reliably infer power-law scaling of the
fluctuation function, a straight line in the log-log plot has to be established. This requires the
investigation of the local slopes [14]. However, finite datasets bring along natural variability.
To decide if a fluctuating estimation of the slope should be considered as being constant,
empirical confidence intervals must be calculated for a long-range and a simple short-range
correlated model [14]. To the authors knowledge, this has never been applied to animal
behavior time series.

Third, the duration of the test and sampling frequency are of vital importance in animal
behavioral studies. Many animal behavioral studies last only five or ten minutes. Longer
durations are not always possible because behavioral pattern and experimental conditions
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can change through time. For example, behavioral studies often focus on studying animals in
novel, stressful environments where the animal can adapt over time, or they evaluate response
to a drug or toxin which metabolizes in the organism resulting in the blood concentration
changing over time. In addition, animal behavior is subject to circadian rhythms, and
exhaustion if forced to perform a certain behavior over a prolonged period of time. The
sampling frequency of the behavior also has limitations. In the case of evaluating locomotor
activity, the sampling interval cannot be shorter than the time it takes the animal to take a
step. Hence, there are empirical limitations on the number of data points a behavioral time
series can have. Studies that use DFA to evaluated changes in the correlation properties of
a behavior due to stressors or age, many times have around 1400 - 7200 data points [5, 6, 9,
10, 12, 17, 19, 20], for example representing test durations no longer than 1 h, with sampling
intervals between 0.3 to 1 s. The length of the time series is also important to accurate
estimate the scaling parameters and in evaluating whether the process presents short-range
or long-range correlation. In a short memory processes, the slope of the fluctuation function
converges to α = 0.5 for time scales large enough. However, for a finite set of data, a priori
one cannot be sure that the series is long enough to show this plateau. Therefore, for a
process with unknown correlation structure, it is misleading to use α > 0.5 as evidence for
long-memory (see Section 3.2 for further details) [14], especially when the time series is short.
In other words, it might be possible that the record is too short to exhibit a plateau with
α = 0.5. Herein, the effect of the duration of the behavioral time series on estimation of
scaling parameters will be evaluated.

Forth, in a previous study [18-20] in Japanese quail, we have shown that long periods
of inactivity (relative to the total duration of the test) caused by a heighten fear response
can result in a loss of the typical monofractal pattern. Thus, it is important to consider this
factor when evaluating behavioral time series with DFA.

In this paper, we study the use of fractal analysis to evaluate the temporal dynamics of the
locomotor pattern in two very different animal models, Japanese quail (Coturnix coturnix)
and larvae of Culex quinquefasciatus mosquito. The Japanese quail is a bird that principally
walks, although in certain stressful conditions can make short flights. On the contrary, the
larvae of Culex quinquefasciatus mosquito dwell in the water, feeding on organic material in
the water, and must come to the surface to breath. The paper is organized as follows: In the
next section the experimental details are described. In Section 3, first, we investigate the
slopes in the fluctuation function and determine empirical confidence intervals for a family of
correlated models, the ARFIMA(p,d,q) models. In Section 4, first we systematically study
different orders of the DFA technique to assess the presence of trends in the data time series.
Second, we investigate the local slopes in the fluctuation function of DFA. Third, we evaluate
the effect of test duration on the estimation of the DFA self-similarity parameter, α. Section
5, compares DFA with a different fractal analysis that has been used in animal behavior
studies, Frequency distribution of behavioral events or symbolic analysis [13, 24-26]. We
summarize the results in Section 6.
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2. Experimental setting and data recording

Japanese quail were reared following Kembro et al. [27]. At 31 days of age, 4 female
and 4 male quail were individually housed in a white wooden box measuring 43 x 41.7 x 46
cm (length x width x height). Each box had a sand floor, a wire-mesh roof (5 cm grid) and
a video camera placed 1.3 m above the box. Coincident with placement into their boxes,
birds were switched to a quail breeder ration (20% CP; 2900 Kcal ME/kg) and water was
continued ad libitum. Quail were subjected to a daily cycle of 14 hours light (between
6:00 and 20:00):10 hours dark during the study. The next day (32 days of age) the animal’s
behavior was recorded onto computer during 12 consecutive hours, from 07.00 to 19.00 hours.
During this observation period, the experimenter did not enter the room.

Forth instar Culex quinquefasciatus larvae were reared in the laboratory (following [28]).
Seven larvae were individually and simultaneously tested in identical experimental glass
boxes (4 cm x 4 cm x 16 cm) with one transparent and 3 white vertical walls. The seven
boxes were lined approximately 3 cm apart, so that each larva could not visualize the larvae
in the next neighboring box. These seven larvae were assigned to one of two treatments that
differed in the type of water used during the experiment, distilled water or source (water
from the container the larvae were raised in). The assay was recorded during 3 hours with a
video camera installed directly in front of the boxes. The test duration was chosen in order to
minimize the effect that a lack of food supply could have on locomotor activity. During this
observation period, the experimenter remained out of the room to minimize disturbances.

The locomotor activity of the animal was determined from the video recordings using the
ANYMAZE computer program. The X, Y coordinates of the animal were recorded at 1/2
second (quail) or 1/3 second time interval (mosquito larvae). A value of 1 represented the
animal moving during the time interval (and the distance ambulated was also recorded), or
alternatively a 0, representing immobility, was assigned if the animal did not move during
the time interval. Thus, a time series (xi) of the locomotor activity during the test was
constructed for each animal, with a total N of 86400 or 32400 data points, quail or mosquito
larvae respectively. The following variables were measured for each animal:

• Percentage of total time ambulating:

t% =

∑

ti
N

.100

where ti is the time interval (s) in which the animal is ambulating and N is the total
number of data points of the test (s).

• Ambulation event: interval of time (> 0.6 s) in which the animal moves continuously.

• Immobility event: interval of time (> 0.6 s) in which the animal remains immobile.
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3. Definition and Properties of Detrended Fluctuation Analysis (DFA) Method

3.1. Definition

Long-range correlated processes are characterized by algebraically decaying correlations.
Given a time series {Xt}, the Detrended Fluctuation Analysis (DFA) proposed by [1], and
described in detail in [18] consists of five steps. In the first one, for each t ∈ {1, . . . , N}, the
cumulative walking time series Yt

Yt =

t
∑

j=1

Xj (1)

is computed. This integrated time series {Yt} is divided into [N/n] non overlapping blocks,
each containing n observations. In the third step, for each block, a least square line is fitted
to the data, which represents the local trend of the block. In the fourth step, the time series
{Yt} is detrended:

Zt = Yt − Y n
t (2)

where Y n
t denotes the adjusted fit on each block.

Finally, in the fifth step, for each n ∈ {2m+2, . . . , N/4}, the root mean square fluctuation
function F (n) is computed.

Definition 1. The root mean square fluctuation function F (n) is defined by

F (n) =

√

√

√

√

1

M

M
∑

t=1

(Yt − Y n
t )

2 =

√

√

√

√

1

M

M
∑

t=1

Z2
t (3)

where M is maximum multiple of n, smaller or equal to N , i.e. M = [N/n].

Observe that F (n) will increase with block size n. A linear relationship on a log-log scale
indicate the presence of power law scaling

F (n) = φnα (4)

Under such condition the fluctuations can be characterized by a scaling exponent α, which
is the slope line when regressing ln(F (n)) on log(n).

By taking the logarithm of the toot mean square fluctuation value, given by 4 we obtain

log(F (n)) = log(φ) + α log(n). (5)

Then, we may rewrite eq.( 5) in the context of a simple linear regression model, obtaining
an estimate of α given by

α̂ =

∑m
j=1

(xj − x)yj
∑m

j=1
(xj − x)2

=
x(1− y)

1

m

∑m
j=1

(xj − x)2
(6)

where yj are log(F (n)), m = N/4− (2m+ 2) and xj = log(n).
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The α-value relates to the autocorrelation structure of the original time series Xi in the
sense that if α = 0.5 indicates that the original series is uncorrelated (random). Short
range correlations (correlations decay exponentially) would be indicated if the log-log plot
approached a straight line with slope 0.5 for large window sizes. The situation of 0.5 < α < 1
indicates long-range autocorrelation (correlations decaying as a power-law) exist, meaning
that on-going behavior is influenced by what has occurred in the past, [18, 30].

3.2. Properties

Different properties have been established by simulation when the true process is a frac-
tional Brownian process [29], and ARFIMA(p,d,q) processes [30], even in the presence of
trends. However, the length of the series considered on these papers are short enough to
generate doubts about the estimation accuracy of α, when working with real data. Ma-
raun et. al. [14] have given warnings about misleading estimation with data simulated with
ARMA processes with superimposed trends, when the series are too short to see the plateau
a = 0.5. In our case, we have series long enough to consider valid Crato et al. [30] asymptotic
estimations, which we are introducing below for the sake of completeness.

3.2.1. Asymptotic normality

If the F (n) function is contaminated by an additive independent gaussian noise with stan-
dard deviation σ, the α̂ estimator obtained by Ordinary Least Squares (OLS) is a consistent
estimator with variance given by

V ar(α̂) =

∑m
j=1

(xj − x)2V ar(yj)
(

∑m
j=1

(xj − x)2
) =

σ2

1

m

∑m
j=1

(xj − x)2
(7)

The distribution is asymptotically normal, so a hypothesis test for the presence of long term
correlation can be expressed as

H0 : α = 0.5 HA : α 6= 0.5

In fact, in the case of ARFIMA(p,d,q) processes, the differentiating parameter d is related
to the α parameter, since α = d+0.5, so the test based on DFA scaling parameter is usually
written as

H0 : d = 0 HA : d 6= 0

The test statistics for the DFA estimator d̂ = α̂− 1/2 is given by

Z =
d̂− dH0
√

V ar(d̂)
.

The lower and upper confidence interval values for the parameter d based on any of the
estimation methods proposed here, are given by

lower value = d̂− zα/2.σd̂ upper value = d̂+ zα/2.σd̂
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where zα/2 = 1.96 and σd̂ =

√

V ar(d̂).

3.2.2. Detrending order

The method of Detrended Fluctuation Analysis is an improvement of classical Fluctuation
Analysis, which is similar to Hurst’s rescaled range (R/S) analysis. They allow the empirical
determination of the correlation properties on large scales. All three methods are based on
random walk theory, but while both, FA and Hurst’s methods fail to determine correlation
properties if linear or higher order trends are present on data, DFA explicitly deals with
the monotonous trends in a detrending procedure. This is done by estimating a piecewise
polynomial trend y(p)(s) within each segment by least square fitting. Conventionally the
DFA is named after the order of the fitting polynomial (DFA1, DFA2, etc) Note that DFA1
is equivalent to Hurst’s analysis in terms of detrending.

Bashan et. al. [31] remarked that only a comparison of DFA results using different
detrending polynomials yields full recognition of the trends. Also, a comparison with inde-
pendent methods is recommended for proving long range correlations.

In the next section, we discuss the test for long range correlation under the ARFIMA
models for two different decorrelation orders of DFA, linear and cubic. In one case, linear
detrending is enough for establishing long term correlation, but in the other, linear and cubic
detrending yield significantly different estimations, showing the need for a deeper study of
trends.

3.3. Behavioral time series

In this subsection we analyze times series related to 8 different Japanese quail and 7
mosquito larvae. For each sequence we tested the long memory hypothesis

H0 : d = 0 HA : d 6= 0

under the ARFIMA(p,d,q) general model.
For each sequence we represent graphically the 95% confidence intervals for the long

memory parameter α = d + 1/2, with d the fractional parameter of the allegedly ARFIMA
model.

3.3.1. Japanese Quail Coturnix coturnix

In Table 1 we observe that the existence of a long range dependence is statistically
significant at a 5% level for the DFA estimation of the differential parameter d in the 8 quail
behavioral time series. Taken into consideration the confidence intervals for the different
animals studied, the short memory hypothesis (α = 0.5) can be rejected with good power.
The table also shows the confidence intervals for two different DFA detrending procedures,
DFA1 and DFA3. Although for some animals (3, 4 and 5) the confidence interval was
numerically larger, overall the difference in the detrending order is not significant, since in
all cases, the confidence intervals cross over.
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DFA1 ± SE*1.96 DFA3 ± SE*1.96
0.7875± 0.0125 0.8061± 0.0155
0.7727± 0.0149 0.7726± 0.0153
0.7844± 0.0186 0.7935± 0.0147
0.7907± 0.0259 0.8037± 0.0153
0.7722± 0.0196 0.8054± 0.0149
0.8090± 0.0123 0.8089± 0.0178
0.8956± 0.0172 0.8838± 0.0196
0.8131± 0.0202 0.8116± 0.0198

Table 1: Confidence intervals for the α-value of behavioral time series of Japanese quail estimated with a
DFA detrending order of 1 (DFA1) and 3 (DFA3) and at a 95% confidence level.

3.3.2. Mosquito larva Culex quinquefasciatus

From Table 2 we observe that the existence of a long range dependence is statistically
significant at 5% level for the DFA estimation of the differential parameter d, in the 7
behavioral time series of mosquito larvae evaluated.

Taking into consideration the confidence intervals estimated for the different animals the
short memory hypothesis (α = 0.5) can be rejected. The power of the test in this case is not
as good as in the case of the Japanese quail, showing a much larger confidence interval in
mosquito larvae (Table 2; range for DFA3: 0.0195-0.0343) than that observed for Japanese
quail (Table 1; range for DFA3: 0.0147- 0.0198). These differences between species will be
further explored in the following sections. Table 2 also shows the confidence intervals esti-
mated for two different DFA detrending procedures, DFA1 and DFA3. Significant difference
in the α-value estimated with DFA1 and DFA3 was observed in the behavioral time series
from animal 3, 5 and 7, where the confidence intervals cross each other. The differences
between detrending orders imply the presence of crossovers (see Section 4), and generate the
need of a deeper study of the scaling properties of the behavioral series of this species.

DFA1 ± SE*1.96 DFA3 ± SE*1.96
0.6651± 0.0264 0.7078± 0.0301
0.6654± 0.0242 0.670± 0.0277
0.7287± 0.0357 0.8005± 0.0343
0.6201± 0.0184 0.6152± 0.0195
0.7163± 0.0384 0.8028± 0.0263
0.5450± 0.0227 0.5707± 0.0248
0.8034± 0.0324 0.8939± 0.0235

Table 2: Confidence intervals for the α-value of behavioral time series of mosquito larvae estimated with a
DFA detrending order of 1 (DFA1) and 3 (DFA3) and at a 95% confidence level.
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3.3.3. Word of caution

Maraun et al. [14] and Kantelhardt et al. [23] have given warnings about the abuse of such
asymptotic results without proper model estimation. Series length and high degree trends
may reduce the power and size of such estimations, so it is necessary to study several degrees
of detrending to determine that the model is not indeed a masked short term correlation
process, and to achieve stationarity.

Crato. et al. [30] have also shown a real example with four DNA sequences of more than
300000 bp each. All of them reject the null hypothesis of short memory with d values as
small as 0.032, if the ARFIMA model is valid. Rejections of 10 different estimators validate
the results. In the following sections we will study several order of detrending within the
DFA procedure, and the weight of the series length in the DFA analysis.

4. Detrending

Detrending can be defined as the operation of removing the trend; whereas a trend is
an intrinsically fitted monotonic function or a function in which there can be at most one
extremum within a given data span [32]. Kantelhardt et al. [23] reported that trends in the
original time series data can lead to an artificial crossover in the slope of the log-log plot of
F (n) vs. n, i.e., the slope α is increased for large time scales. To determine the order of DFA
that would eliminate these trends, and to estimate the value of α reliably,reliably, DFA was
calculated with different detrending orders. For this purpose, linear (DFA1), square (DFA2),
cubic (DFA3) and higher order polynomials were used in the fitting procedure. Since the
detrending of Yj time series is performed by subtraction of the fits from data, these methods
differ in their capability of eliminating trends in the data. In the mth-order DFA (DFAm),
trends in the profile of the Yj time series of order m-1 are eliminated [23]. In other words,
the artificial crossover (more than one linear fit) disappears when the detrending order used
in the DFA is larger than the order of the trend. For example, if linear trends are present in
the original time series, DFA2 and higher would eliminate the artificial crossover produced
by linear trends. Therefore, after evaluating the fits of all DFA performed with different
detrending orders, we selected the lowest detrending order that eliminated trends in all data
series and used this order for group comparisons.

4.1. Elimination of trends in data

As previously stated, for the reliable detection of long range correlations, it is essential to
distinguish trends from the long-range fluctuations intrinsic in the data. It is the advantage
of the DFA that it can systematically eliminate trends of different order. In this way, we can
gain an insight into the scaling behavior of the natural variability as well as into the trends
in the considered time series [23].

First, a Power Spectrum Analysis was used to evaluate the presence of can regular oscil-
lations in time-series data. This is important given that a superposed sinusoidal trend can
cause artificial crossover in the fluctuation function at the scale corresponding to the period
of the sinusoidal trend [22]. For this reason, in order to accurately use DFA, a given time
series should not present periodic oscillations. Thus, their presence were evaluated using
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the power spectrum analysis tool (POWSPEC.XFM) from SigmaPlot [33]. No character-
istic periodic oscillations were observed in any of the time series, indicating that DFA can
appropriately and directly be used herein (data not shown).

The possible presence of trends in the locomotor data time series of quail and mosquito
larvae (Figure 1a,b, and 2a,b, respectively) was systematically studied by applying conse-
quently higher polynomial orders to the fitting procedure of DFA (see previous section). Sev-
eral locomotor time series of Japanese quail showed more than one slope (artificial crossovers)
when using DFA1 and DFA2 (Figure 1c). However, these crossovers disappeared when DFA
of order 3 was used, thus showing that the presence of trends in the data have led to an arti-
ficial crossover in the scaling behavior of the fluctuation function, i.e., the slope is increased
for large time scales n [23]. Importantly, these crossovers disappear for higher detrending
orders. These results are consistent with the analysis shown in Table 1 (Section 3.3.2) were
in some animals (3, 4 and 5) the confidence interval for the estimation of α with DFA1
was numerically larger than with DFA3, reflecting more dispersion in the Fluctuation as a
result of the presence of crossovers for DFA1. In all, these results further indicate that the
DFA method is a reliable tool to accurately quantify correlations [22] in biological signals
embedded in polynomial trends.

The position of this artificial crossover depends on strength A and power p of the trend
[23]. For weak trends no artificial crossover is observed if the detrending order 1 is larger than
p [23]. Thus, the reported scaling and crossover features of F (n) can be used to determine
the order of polynomial trends present in data [22].

For the locomotor time series of quail, DFA3 (third order) is the lowest detrending order
that eliminated trends in all data time series, and therefore was used in the rest of this
study. An ANOVA showed no differences (P > 0.05) between male and female quail in
their p-values (0.86 ± 0.01 and 0.84 ± 0.02; respectively) nor in their values of r2 of the
corresponding linear fit (0.995± 0.000 and 0.995± 0.001; respectively).

For mosquito larvae locomotor time series data, a crossover in the correlation behavior is
observed (Figure 2c). The crossover is clearly visible in the results for all detrending orders
l. All detrending orders showed almost identical slopes In addition, rather similar crossover
positions were observed for all detrending orders, with a slight systematic deviation that is
most significant in the DFAl with higher order detrending as predicted by Kantelhardt et al.
[23] in their work with artificial time series.

The crossovers were observed for window sizes ranging from log n ∈ [2.49 − 3.22] (mean
value 2.83 ± 0.13); which implies that a change in the autocorrelation properties of the
locomotor activity of mosquito larva occurred at a temporal scale around 330 seconds (range
[ 155 - 830] seconds). The value of the first slope varies slightly between animals α1 =
0.97±0.02 (range [0.93 - 1.09]) with a good linear fit (r2 = 0.996±0.001). On the contrary the
value of the second slope is lower and is much more variable between animals (α2 = 0.42±0.06
range [0.18 - 0.73]), also the corresponding linear fit is poorer and more variable (r2 =
0.88±0.05; range [0.65 - 0.97]). If not taken into account these crossovers can significantly
impair the estimation of the α-value as seen in Section 3.3.3, where a larger 95% confidence
interval was observed for mosquito larvae in comparison to Japanese quail, thus hindering
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Figure 1: . Detrendend Fluctuation Analysis of locomotor temporal pattern of Japanese Quail evaluated in
their home cage. a) Cumulative locomotor time series; b) Magnification of the same time series as “a”, a
similar pattern in observed for all levels of magnification. c) Example of trend elimination capability of DFA
in time series using linear (DFA1), quadratic (DFA2), cubic (DFA3) and 4th order (DFA4) DFA. DFA3 was
selected for group comparisons, given that 3rd order polynomials eliminated trends in data. d) Local slopes
(α) and e) r2 of the corresponding linear fits estimated for different window sizes (5, 25 and 50 data points).
Note that for small windows, the bias is very low, but the variability renders the interpretation difficult,
whereas for large windows, the variance is reduced at the cost of a biased estimate of α estimated with DFA,
and f) for increasing test durations. Values are represented as mean ± S.E. A one-way repeated measures
ANOVA was used to determine the effects gender (female and male), and test duration (within-subject
factor) as well as their interactions on the estimation of α. No significant effect of gender or test duration
was observed.

interpretation of results.
The value of the first slope varies slightly between animals α1 = 0.97±0.02 (range [0.93

- 1.09]), with a good linear fit. On the contrary the value of the second slope is lower
and is much more variable between animals (also the corresponding linear fit is poorer and
more variable). In all, DFA was able to distinguish between artificial and real crossovers in
behavioral time series. The artificial crossover observed in the temporal pattern of locomotion
of Japanese quail (Figure 1c) was eliminated for detrending orders 3 and higher; and was
clearly different than the real crossovers in the correlation behavior observed in mosquito
larvae locomotion, which showed identical slopes and rather similar crossover positions for
all detrending orders (Figure 2c). These results highlight the importance of systematically
studying the presence of trends in behavioral time series when applying DFA.

4.2. Establish scaling

Maraun et al. [14] proposed that to reliably infer power-law scaling of the fluctuation
function, a straight line in the log-log plot has to be established. Since a straight line is
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tantamount to a constant slope, the local slopes n of log(F (n)) vs. log(n) have to be evaluated
for constancy in a sufficient range. The author noted two difficulties for the calculation and
interpretation of the local slopes in finite time series: First, estimating the local slopes by
finite differences results in a large variability. This can be reduced fitting a straight line to
log F (n) vs. logn within a small window. The window is then shifted successively over all
calculated scales n. Maraun et al. [14] observed that choosing the optimal window size,
one has to trade bias for variance: for small windows, the bias is small, but the variability
renders the interpretation difficult, whereas for large windows, the variance is reduced at
the cost of a biased estimate of α. Thus, the extreme case of a single straight line fit to the
whole range of scales considered is maximally biased.

Figure 1d and 2d show the local slopes calculated from the locomotor time series of quail
and mosquito larva, respectively. Also, we estimated the r2 of the linear fit for the local slops
(Figure 1e and 2e). When applying the DFA method to locomotor time series of Japanese
quail (Figure 1c) a slight bend-down is observed for DFA3 for a very small box of F (n), this
is because many variables are needed to fit those few points [22]. This is clearly observed in
Figure 1c by an increased α-value for small box sizes. Also, for very large boxes, fluctuations
become larger (Figure 1d) and the r2 of the estimation decreases (Figure 1e), due to the
under sampling of F (n) when n gets closer to the length of the signal N [22]. For this
reason Hu et al. [22] proposed that one-tenth of the signal length could be considered as the
maximum box size when using a DFA, and not N/4 that is frequently used.

When applying the DFA method to locomotor time series of mosquito larvae an abrupt
decline in the α-value (Figure 2d) and the r2 (Figure 2e), of the estimation is observed for
increasingly large window, clearly representing a crossover in the fluctuation function.

4.3. Effect of test duration

The possible effect of test duration on the estimation of α in the locomotor data time series
of quail and mosquito larvae was evaluated, by calculating α for increasing test durations.
In Japanese quail time series a slight increase in the α-value was observed for increases test
duration, with an α ≈ 0.79 for 1 hour test duration that stabilized in α ≈ 0.83 for test
durations ≥ 4hs (Figure 1f). Although, this quantitative increase in α was observed, it
does not represent a qualitative difference in scaling properties. In addition, throughout
the day, no qualitative differences were observed in α-values (range from 0.76 to 0.85) or
on the r2 of the linear fit (r2 > 0.85) when estimated for 1 hour time intervals throughout
the day (data not shown), indicating the absence of a clear effect of circadian rhythms on
the correlation properties of the locomotor pattern. Similar α-values have been observed in
previous studies of locomotor time series (with test durations ≤ 1 hour) in Japanese quail
[18-20] and in a closely related species, the domestic chickens [9, 10], suggesting that the α
-values within the range of 0.69 and 0.90 could be characteristic of the locomotor pattern
of poultry. However, the exact α-value depends on the experimental situation, such as the
environment, the presence of stressors and age [9, 10, 18-20]. The stride interval of healthy
adult human walking behavior (test durations ≤ 1h) is also monofractal and was shown to
have a higher α -value that varies between 0.84 and 1.1, remaining fairly constant despite
substantial changes in walking velocity and mean stride intervals, but can be affected by
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Figure 2: Detrendend Fluctuation Analysis of locomotor temporal pattern of mosquito larvae Culex quin-
quefasciatus. a) Cumulative locomotor time series; b) Magnification of the same time series as ”a”, a similar
pattern in observed for all levels of magnification. c) Example of trend elimination capability of DFA in time
series using linear (DFA1), quadratic (DFA2), cubic (DFA3) and 4th order (DFA4) DFA. Observe that a
clear change in slope is observed for all detrending orders. DFA3 was selected for group comparisons. Local
slopes (α) and e) r2 of the corresponding linear fits estimated for different window sizes (5, 25 and 50 data
points). Note the abrupt decrease in slope (α) and r2 for large windows, further indicating a crossover in
the fluctuation function, α estimated with DFA, and f) for increasing test durations. Values are represented
as mean ± S.E. A one-way repeated measures ANOVA was used to determine the effects water treatment
(distilled or source water), and test duration (within-subject factor) as well as their interactions on the
estimation of α. A significant effect of test duration was observed (P < 0.05). Test duration that do not
share the same letter showed significant differences (P < 0.05) in a LSD test.

age and disease [5, 34]. Also, the α-values can vary substantially between behaviors in a
particular species [7, 10, 12], for example in chicken the α-value of vigilance behavior was
0.98 (S.D. = 0.042, range = [0.90-1.08]), while the walking pattern shows an α-value of 0.70
(S.D. = 0.051, range = [0.58-0.81]) [10].

Figure 2f shows the effect of test duration on the estimation α1-values in mosquito larva.
A significant difference between water treatments was observed for a test duration of 30min,
this difference became less notorious for longer test durations approaching α1 ≈ 0.95. The
r2 of the estimation of α1 was always higher than 0.99. Similar α1 -values were observed in
an independent study in larvae of Culex quinquefasciatus in our laboratory [17], where α1-
values were significantly decreased when larva were treated with lethal or sublethal doses of
the essential oils of Lippia turbinata and Lippia polystachya. Recent studies have also shown
that the α1-value could vary between mosquito larvae species depending on their ecological
role in their habitat (Archilla, Kembro and Gleiser, unpublished data).

Before shorter time series can be used to evaluate the effects of a particular test treatment
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in the temporal pattern of a behavior in a given species, long-range correlations should be
established previously. This is important because Maraun et al. [14] showed that a local
slope larger than α = 0.5 for large scales does not necessarily imply long-memory. If the
length of the time series is not sufficiently large compared to the time scales involved, also
for short-memory processes α = 0.5 may not be reached. In their example, the empirical
fluctuation function of a short-memory model of length N = 1000000 occurred at a constant
slope (α = 0.6) between l log n ≈ 2.6 (n ≈ 600) and log n ≈ 3.8 (n ≈ 6000). Only on larger
scales the slop reduces to α = 0.5. This process in which the fluctuation function converges
to α = 0.5 cannot be observed for shorter time series (N = 70492).

In all, our results show that although test duration can slightly influence the estimation
of α, no qualitative differences were observed between different test durations that varied
between 1 and 12 h. Also, considering the consistency observed between different experiments
and laboratories in the values of α, certain ranges of α-value and autocorrelation structure
(mono or multifractality) could be characteristic of a certain behavior of a given species.
Therefore, once long-range correlations are established (see previous sections) using “long”
time series, shorter time series could be used during testing, in order to evaluate, for example,
changes in α-value due to a particular treatments, such as modifications in the environment,
stressors or neuroactive substances.

5. Frequency distribution of the duration of immobility and mobility events
(FDD-I and FDD-M, respectively)

Figure 3: Frequency distribution of the duration of immobility and mobility events of Japanese quail calcu-
lated with: a) data from all animals is combined, and b-c) with data discriminated taking into consideration
sex. Females were represented by filled symbols, while males were shown as open symbols.

The FDD-I and FDD-M was analyzed by plotting the frequency vs. the duration of
immobility or mobility events, respectively, using a double logarithm scale. We evaluated
whether the frequency distribution adjusted to a linear fit in a log-log plot when all animal
data (Fig 3a and 4a) and when data from each treatment was pooled together (female/male
(Fig 3b-c) or distilled/source water (Fig 4b-c) are plotted separately). Also we evaluated
the FDD-I and FDD-M of each animal separately in order to allow statistical comparisons
between groups. When a linear fit was achieved, it was considered as indicative of a power-
law (fractal) distribution. The slope of the linear fit is known as the scaling factor (S) and
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was determined for both the immobility (SI) and the mobility (SM) events. We also looked
at the r2 value of the distribution when plotted on a semi-log scale, which would correspond
to an exponential distribution. In order to consider the frequency distribution a power law,
the r2 value must be higher in the fit to the log-log plot than the semi-log plot.

In Japanese quail, many long duration of immobility and mobility events were present,
indicating an asymmetric frequency distribution of the duration of the immobility or mo-
bility events. In figure 3a these frequency distributions show linear fits in a log-log plot for
immobility events SI = −1.48 (r2 = 0.86), and SM = −2.48 (r2 = 0.92) when the data for all
animals is combined. Similar values (Figure 3b,c) were found when data was discriminated
taking into consideration sex (Female: SI = −1.38 (r2 = 0.85), SM = −2.40 (r2 = 0.90), and
Male: SI = −1.33 (r2 = 0.83), SM = −2.23 (r2 = 0.92)). When inter-individual variations
were evaluated at different test durations, the mean value of SI (Figure 5c) and SM (Figure
5g) for the female and male groups became more negative with larger values of r2 (Figure
5e,i) for longer test durations approaching the values estimated when the data from all the
individuals of each group was combined. Interestingly, these results cannot be explained due
to fluctuations in the time mobile or duration of immobility and mobility events throughout
the day (Figures 5a,b,d,f,h,j). Although the amount of data obtained per animal during the
one hour trail is not enough to accurately represent the tails of the numerical distributions
(0.58 > r2 > 0.79; Figure 5f,j); nevertheless, Figure 5d shows that the mean value of SI fluc-
tuates throughout the day between -0.37 and -0.77, and becomes only slightly more negative
towards the end of the day. Similar values (mean values of SI = 0.66± 0.05) were observed
in an independent 40 min study also in Japanese quail [19]. Also, the mean value of SM

remains fairly constant throughout the day, ranging between -0.79 and -1.03 (Figure 5h).

Figure 4: Frequency distribution of the duration of immobility and mobility events of mosquito larve Culex
quinquefasciatus calculated with: a) data from all animals is combined, and b-c) with data discriminated
taking into consideration water treatment. Source water treatment was represented by filled symbols, while
distilled water treatment was shown as open symbols.

The majority of the studies that evaluate the distribution of the duration of behavioral
events combine the data of many animals to obtain the frequency histograms, especially if
the test has a short duration [13, 26, 35, 36]. In this study when the data from the one-hour
records are combined, similar values were obtained of SI = −1.03 (r2 = 0.81); (Female:
SI = −0.81 (r2 = 0.75); Male: SI = −0.97 (r2 = 0.77)), and SM = −1.56 (r2 = 0.86)
(Female: SM = −1.27 (r2 = 0.76) and Male: SM = −1.51 (r2 = 0.80)). These values are a
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substantial improvement on the estimation of these parameters for short test duration (1 h),
showing values closer to those estimated when the test lasted more than 4hs. However, the
combination of data from many animals result in the loss of valuable information regarding
inter-individual variations, which are of importance in order to characterize population vari-
ability and to study differences between treatment groups. For example, quail stimulated
to explore for food (food was scattered on the floor of the home box after 3 hours of feeder
withdrawal) show a significantly more negative SI scaling factor, and a tendency toward
a more negative SM scaling factor, than their un-stimulated counterparts [19]. In all, our
results show that when evaluating the frequency distribution of the duration of immobility
and ambulation events it is important to use long time series for estimation of SI and SM , in
order to improve estimation of parameters and to improve the evaluation of inter-individual
variability in the population.

In mosquito larvae, asymmetric frequency distributions of the duration of the immobility
or mobility events were also observed. In Figure 4a these frequency distributions show
linear fit in a log-log plot of all treatments for immobility events SI = −1.15 (r2 = 0.83),
and SM = −2.44 (r2 = 0.88). Similar values (Figure 4b,c) were found when data was
discriminated taking into consideration water treatment (Distilled: SI = −1.12 (r2 = 0.81),
SM = −2.36 (r2 = 0.93) , and Source: SI = −0.96 (r2 = 0.79), SM = −2, 15 (r2 = 0.89)).

In mosquito larva SM also can be fitted to an exponential (Total data: slope = −0.22 (r2 =
0.97); Distilled water: slope = −0.23 (r2 = 0.95); Source water: slope = −0.20 (r2 = 0.96)).
This contrasted our previous results in quail where exponential fits have r2 ≤ 0.64 for SM ,
and in both species SI fit an exponential with an r2 ≤ 0.32. When inter-individual variations
were evaluated at different test durations, the mean value of SI (Figure 6c) and SM (Fig-
ure 6e) for the both water treatment groups became more negative with larger values of r2

(Figure 6d,f) for longer test durations approaching the values estimated when the data from
all the individuals of each group were combined. As in Japanese quail, these results cannot
be explained due to fluctuations in the time mobile (Figure 6a,b) or duration of immobility
and mobility events throughout the day (data not shown).

Anteneodo and Chialvo [35] showed in rat, evaluated in their home-cage during 9 consecu-
tive days, that from few seconds to several thousand seconds (about 1 hour), the distribution
of inter-event times (equivalent to immobility) decays as a power law (with scaling exponent
falling within the interval of 1.75± 0.05) for all six animals. In contrast, the distribution of
the duration of motion (mobility) episodes did not possess a characteristic time scale, and
was described by a superposition of two exponentials with characteristic times of the order
of 1 and 4 s, close to the smaller data resolution and to the average duration of motion
episodes, respectively.

In our study, quail and mosquito larvae both show frequency distributions of immobility
and mobility events that decay as a power law. In addition, the value of the scaling exponent
for immobility events (SI) were lower in quail and in mosquito larva (-1.48 and -1.15, re-
spectively) compared to the values observed by Anteneodo and Chialvo [35]. In both species
the scaling exponent of mobility events SM (-2.48 in quail and -2.44 in mosquito larvae)
was larger than SI indicating that mobility events are frequently of shorter duration than
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immobility events.
Our results show that in contrast with DFA (where no qualitative effect of test duration

was observed on the estimation of the α-value) when evaluating the frequency distribution
of the duration of immobility and ambulation events it is important to use long time series
for estimation of SI and SM , in order to improve estimation of parameters. For short time
series (< 10000 data points) pooling data from animals is a way to improve estimation of
scaling parameters, but eliminates the possibility of evaluating variability in the population,
which is very important in animal behavior studies due to the natural large variation in a
behavioral response even between animals of a same species, sex, age, and reared identically.

Figure 5: Parameters of locomotor activity in female and male Japanese quail. a-b) Percentage of time
ambulating, Scaling exponents calculated as the slop of the log-log plot of frequency vs. duration of the
immobility or ambulation events, c-d) SI and g-h) SA, respectively, and e-f, i-j) the respective r2 of the
linear fit estimated for: a,c,e,g,i) increasing test durations and b,d,f,h,j) at one hour intervals throughout the
day. Values are represented as mean ± S.E. A one-way repeated measures ANOVA was used to determine the
effects gender (female and male), and the test duration (within-subject factor) as well as their interactions
on the estimation of variable. When a significant effect of test duration was observed (P< 0.05) a LSD test
was performed. Test duration that do not share the same letter showed significant differences (P < 0.05).
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Figure 6: Parameters of locomotor activity of mosquito larvae of Culex quinquefasciatus. a-b) Percentage
of time ambulating, Scaling exponents calculated as the slop of the log-log plot of frequency vs. duration of
the immobility or ambulation events, c-d) SI and g-h) SA, respectively, and e-f, i-j) the respective r2 of the
linear fit estimated for: a,c,e,g,i) increasing test durations and b,d,f,h,j) at one hour intervals throughout the
day. Values are represented as mean ± S.E. b) A one-way repeated measures ANOVA was used to determine
the effects water treatment (distilled or source water), and test duration (within-subject factor) as well as
their interactions on the estimation of the variable. When a significant effect of test duration was observed
(P < 0.05) a LSD test was performed. Test duration that do not share the same letter showed significant
differences (P < 0.05).
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6. Summary

The goal of this paper was to evaluate the presence of long-range correlation in animal
behavior time series, in particular the temporal pattern of locomotor activity of Japanese
quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus), using DFA. In our
study, we discuss the following points: 1) the establishment by hypothesis testing of the
absence of short-term correlation, 2) the accuracy of line regression estimation in the log-log
plot of the fluctuation function, 3) the elimination of artificial crossovers in the fluctuation
function, and 4) the influence of length of the time series in the accuracy of estimation. These
aspects have been previously studied using different systems such as statistical model systems
[14,22,23,39,40], temperature records [14], DNA sequences [30, 37], cardiac RR interval time
series [39] or in financial economics [38], but to our knowledge this is the first time these
aspects have been systematically studied directly in animal behavior experiments.

In this study, we observed by hypothesis testing that the existence of long-range correla-
tions for all series was statistically significant at level 5%. We also studied artificial crossover
with several detrending order.

Many authors have stated that the length of the time series is the most alarming factor
when determining accuracy in scaling properties estimation. Short time series can suggest
long-range correlation just because the series has not reached its plateau. Thus, many
authors have suggested the use of DFA only with long series. In our case, the Japanese quail
(Coturnix coturnix) behavior can be monitored during relatively long periods of time without
any significant change in experimental conditions. Mosquito larva (Culex quinquefasciatus)
changes its behavior after a significant number of hours, so test duration is mandatory
restricted.

We also compared DFA to another fractal analysis, frequency distribution of the dura-
tion of behavioral events. Our results show that when using this frequency statistic, long
time series are very important for obtaining high accuracy in the estimation of SI and SM .
With DFA, there was no qualitative effect of test duration when evaluating the frequency
distribution of the duration of immobility and ambulation events.
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