1,529 research outputs found

    Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation Advection during BoBBLE

    Get PDF
    Sea surface temperature (SST) is a fundamental driver of tropical weather systems such as monsoon rainfall and tropical cyclones. However, understanding of the factors that control SST variability is lacking, especially during the monsoons when in situ observations are sparse. Here we use a ground-breaking observational approach to determine the controls on the SST variability in the southern Bay of Bengal. We achieve this through the first full closure of the ocean mixed layer energy budget derived entirely from in situ observations during the Bay of Bengal Boundary Layer Experiment (BoBBLE). Locally measured horizontal advection and entrainment contribute more significantly than expected to SST evolution and thus oceanic variability during the observation period. These processes are poorly resolved by state-of-the-art climate models, which may contribute to poor representation of monsoon rainfall variability. The novel techniques presented here provide a blueprint for future observational experiments to quantify the mixed layer heat budget on longer time scales and to evaluate these processes in models

    Estudio de factores de riesgo asociados a la infección por Mycoplasma suis

    Get PDF
    Este estudio se propuso estimar la distribución de la infección por Mycoplasma suis en poblaciones de cerdos de Argentina e identifi car factores de riesgo asociados. Se recolectaron 284 muestras de sangre de cerdos de diferentes categorías productivas en frigorífi cos y granjas de las provincias de Santa Fe, Córdoba y Buenos Aires. Amplifi cando el gen del ARNr 16S de M. suis a través de la reacción en cadena de la polimerasa (PCR), se calculó un porcentaje de infectados del 64%. Se estimó además que no existía asociación estadísticamente signifi cativa (p>0,1) entre un resultado positivo a la PCR y el sexo del animal muestreado, los antecedentes de anemia en la granja y las condiciones de alojamiento. Contrariamente se encontró asociación signifi cativa (p<0,1) con el origen geográfi co y la categoría productiva. Se estimó que los cerdos de Buenos Aires y Córdoba tenían más probabilidades de ser PCR positivos que los de Santa Fe, mientras que los lechones y los cerdos de recría tenían menos riesgo de infectarse que los animales de más edad. Se concluye que el M. suis está ampliamente distribuido en las poblaciones porcinas estudiadas del país.Fil: Pereyra, N. B.. Universidad Nacional de Rosario; ArgentinaFil: Pérez, A. M.. Universidad Nacional de Rosario; ArgentinaFil: Messick, J. B.. Purdue University; Estados UnidosFil: Cane, F. D.. Ministerio de la Producción de la Provincia de Santa Fe; ArgentinaFil: Guglielmone, Alberto Alejandro. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; Argentin

    A model of diffuse Galactic Radio Emission from 10 MHz to 100 GHz

    Full text link
    Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. Both our data compilation and our software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at http://space.mit.edu/home/angelica/gsm .Comment: Accuracy improved with 5-year WMAP data. Our data, software and new foreground-cleaned WMAP map are available at https://ascl.net/1011.01

    An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles

    Full text link
    The extreme solar and SEP event of 20 January 2005 is analyzed from two perspectives. Firstly, we study features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs. All emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in strong magnetic fields. Thus, protons and electrons responsible for flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays identified with pi^0-decay emission, are similar and correspond in time. The origin of the pi^0-decay gamma-rays is argued to be the same as that of lower energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600 km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred simultaneously within the flare region. We do not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo corrected. The original publication is available at http://www.springerlink.co

    Radio Bursts Associated with Flare and Ejecta in the 13 July 2004 Event

    Full text link
    We investigate coronal transients associated with a GOES M6.7 class flare and a coronal mass ejection (CME) on 13 July 2004. During the rising phase of the flare, a filament eruption, loop expansion, a Moreton wave, and an ejecta were observed. An EIT wave was detected later on. The main features in the radio dynamic spectrum were a frequency-drifting continuum and two type II bursts. Our analysis shows that if the first type II burst was formed in the low corona, the burst heights and speed are close to the projected distances and speed of the Moreton wave (a chromospheric shock wave signature). The frequency-drifting radio continuum, starting above 1 GHz, was formed almost two minutes prior to any shock features becoming visible, and a fast-expanding piston (visible as the continuum) could have launched another shock wave. A possible scenario is that a flare blast overtook the earlier transient, and ignited the first type II burst. The second type II burst may have been formed by the same shock, but only if the shock was propagating at a constant speed. This interpretation also requires that the shock-producing regions were located at different parts of the propagating structure, or that the shock was passing through regions with highly different atmospheric densities. This complex event, with a multitude of radio features and transients at other wavelengths, presents evidence for both blast-wave-related and CME-related radio emissions.Comment: 14 pages, 6 figures; Solar Physics Topical Issue, in pres

    The Case for a Low Extragalactic Gamma-ray Background

    Full text link
    Measurements of the diffuse extragalactic gamma-ray background (EGRB) are complicated by a strong Galactic foreground. Estimates of the EGRB flux and spectrum, obtained by modeling the Galactic emission, have produced a variety of (sometimes conflicting) results. The latest analysis of the EGRET data found an isotropic flux I_x=1.45+-0.05 above 100 MeV, in units of 10^-5 s^-1 cm^-2 sr^-1. We analyze the EGRET data in search for robust constraints on the EGRB flux, finding the gamma-ray sky strongly dominated by Galactic foreground even at high latitudes, with no conclusive evidence for an additional isotropic component. The gamma-ray intensity measured towards the Galactic poles is similar to or lower than previous estimates of I_x. The high latitude profile of the gamma-ray data is disk-like for 40<|b[deg]|<70, and even steeper for |b|>70; overall it exhibits strong Galactic features and is well fit by a simple Galactic model. Based on the |b|>40 data we find that I_x<0.5 at a 99% confidence level, with evidence for a much lower flux. We show that correlations with Galactic tracers, previously used to identify the Galactic foreground and estimate I_x, are not satisfactory; the results depend on the tracers used and on the part of the sky examined, because the Galactic emission is not linear in the Galactic tracers and exhibits spectral variations across the sky. The low EGRB flux favored by our analysis places stringent limits on extragalactic scenarios involving gamma-ray emission, such as radiation from blazars, intergalactic shocks and production of ultra-high energy cosmic rays and neutrinos. We suggest methods by which future gamma-ray missions such as GLAST and AGILE could indirectly identify the EGRB.Comment: Accepted for publication in JCAP. Increased sizes of polar regions examined, and added discussion of spectral data. Results unchange

    Test-retest repeatability of child's respiratory symptoms and perceived indoor air quality - comparing self-and parent-administered questionnaires

    Get PDF
    Background: Questionnaires can be used to assess perceived indoor air quality and symptoms in schools. Questionnaires for primary school aged children have traditionally been parent-administered, but self-administered questionnaires would be easier to administer and may yield as good, if not better, information. Our aim was to compare the repeatability of self- and parent-administered indoor air questionnaires designed for primary school aged pupils. Methods: Indoor air questionnaire with questions on child's symptoms and perceived indoor air quality in schools was sent to parents of pupils aged 7-12 years in two schools and again after two weeks. Slightly modified version of the questionnaire was administered to pupils aged 9-12 years in another two schools and repeated after a week. 351 (52%) parents and 319 pupils (86%) answered both the first and the second questionnaire. Test-retest repeatability was assessed with intra-class correlation (ICC) and Cohen's kappa coefficients (k). Results: Test-retest repeatability was generally between 0.4-0.7 (ICC; k) in both self-and parent-administered questionnaire. In majority of the questions on symptoms and perceived indoor air quality test-retest repeatability was at the same level or slightly better in self-administered compared to parent-administered questionnaire. Agreement of self-and parent administered questionnaires was generally <0.4 (ICC; k) in reported symptoms and 0.4-0.6 (ICC; k) in perceived indoor air quality. Conclusions: Children aged 9-12 years can give as, or even more, repeatable information about their respiratory symptoms and perceived indoor air quality than their parents. Therefore, it may be possible to use self-administered questionnaires in future studies also with children.Peer reviewe

    A Powerful Radio Halo in the Hottest Known Cluster of Galaxies 1E0657-56

    Get PDF
    We report the detection of a diffuse radio halo source in the hottest known cluster of galaxies 1E0657-56 (RXJ0658-5557). The radio halo has a morphology similar to the X-ray emission from the hot intracluster medium. The presence of a luminous radio halo in such a hot cluster is further evidence for a steep correlation between the radio halo power and the X-ray temperature. We favour models for the origin of radio halo sources involving a direct connection between the X-ray emitting thermal particles and the radio emitting relativistic particles.Comment: 21 pages of text, 9 figures, to appear in Ap

    Progressive transformation of a flux rope to an ICME

    Full text link
    The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by the interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 and 10 November, 2004. After determining an approximated orientation for the flux rope using the minimum variance method, we precise the orientation of the cloud axis relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the in- and out-bound branches, and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted considering the existence of a previous larger flux rope, which partially reconnected with its environment in the front. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).Comment: Solar Physics (in press
    corecore