83 research outputs found

    Focal Adhesion-Independent Cell Migration.

    Get PDF
    Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future

    The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling.

    Get PDF
    Blood vessel stability is essential for embryonic development; in the adult, many diseases are associated with loss of vascular integrity. The ETS transcription factor ERG drives expression of VE-cadherin and controls junctional integrity. We show that constitutive endothelial deletion of ERG (Erg(cEC-KO)) in mice causes embryonic lethality with vascular defects. Inducible endothelial deletion of ERG (Erg(iEC-KO)) results in defective physiological and pathological angiogenesis in the postnatal retina and tumors, with decreased vascular stability. ERG controls the Wnt/β-catenin pathway by promoting β-catenin stability, through signals mediated by VE-cadherin and the Wnt receptor Frizzled-4. Wnt signaling is decreased in ERG-deficient endothelial cells; activation of Wnt signaling with lithium chloride, which stabilizes β-catenin levels, corrects vascular defects in Erg(cEC-KO) embryos. Finally, overexpression of ERG in vivo reduces permeability and increases stability of VEGF-induced blood vessels. These data demonstrate that ERG is an essential regulator of angiogenesis and vascular stability through Wnt signaling.This work was funded by grants from the British Heart Foundation (PG/09/096 and RG/11/17/29256). A.V.S. is a recipient of a National Lung and Heart Institute Foundation Studentship. I.M.A. is a recipient of a DOC-fFORTE fellowship of the Austrian Academy of Sciences at the London Research Institute.This paper was published by Cell Press in Developmental Cell (GM Birdsey, AV Shah, N Dufton, LE Reynolds, LO Almagro, Y Yang, IM Aspalter, ST Khan, JC Mason, E Dejana, B Göttgens, K Hodivala-Dilke, Gerhardt, RH Adams, AM Randi, Developmental Cell 2015, 32, 82-96

    Skewed Distribution of Circulating Activated Natural Killer T (NKT) Cells in Patients with Common Variable Immunodeficiency Disorders (CVID)

    Get PDF
    Common variable immunodeficiency disorder (CVID) is the commonest cause of primary antibody failure in adults and children, and characterized clinically by recurrent bacterial infections and autoimmune manifestations. Several innate immune defects have been described in CVID, but no study has yet investigated the frequency, phenotype or function of the key regulatory cell population, natural killer T (NKT) cells. We measured the frequencies and subsets of NKT cells in patients with CVID and compared these to healthy controls. Our results show a skewing of NKT cell subsets, with CD4+ NKT cells at higher frequencies, and CD8+ NKT cells at lower frequencies. However, these cells were highly activated and expression CD161. The NKT cells had a higher expression of CCR5 and concomitantly expression of CCR5+CD69+CXCR6 suggesting a compensation of the remaining population of NKT cells for rapid effector action

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
    corecore