280 research outputs found

    Food security in a COVID-impacted tourism destination: A case study of Queenstown, New Zealand

    Get PDF
    This report outlines the food (in)security situation in Queenstown, New Zealand in the context of its COVID-affected tourism downturn. It is illustrative of the global pandemic’s disruption to the tourism-dependent town and the ways in which this impacted food security within the community. The project used interview data from 13 interviewees each active in the Queenstown community in food welfare, social support, or local government. Supplementary data was gathered via a desk-based document and media search. Community-based food welfare providers reported high demand for food parcels largely due to COVID-19-related income reductions and job losses. Food welfare demand was strong from the commencement of the nationwide lockdown in March 2020, and remained relatively consistent in subsequent months as national borders remained closed to international visitors. Interviewees reported high numbers of migrants accessing food welfare as the result of tourism job losses, reduced shifts, and loss of access to meals they had received in hospitality roles previously. Many of these migrants were ineligible for government support. COVID-19 food security issues have been exacerbated by high demand for housing and high density living, which has reduced the amount of land available for home vegetable planting. This is limiting own food production and access to affordable high-nutrition foods. Reliance on the food welfare sector as a long term strategy is not sustainable if food security is the goal, however the array of community groups that offer food welfare may be able to proactively bolster food security, concurrent with their food welfare operations, and so enable food welfare recipients to transition to less vulnerability and greater food security in the future. Our findings caution against sectoral β€˜self-sufficiency’ because high degrees of independence within sectors can translate to vulnerability in the face of disruption. Inter-sectoral integration – particularly within the agriculture, food and tourism sectors – is one avenue by which each sector could become more resilient. Further research in this area could identify pathways for building resilience

    Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii improves the salt tolerance of Arabidopsis thaliana

    Get PDF
    Many organisms accumulate compatible solutes in response to salt or desiccation stress. Moderate halotolerant cyanobacteria and some heterotrophic bacteria synthesize the compatible solute glucosylglycerol (GG) as their main protective compound. In order to analyse the potential of GG to improve salt tolerance of higher plants, the model plant Arabidopsis thaliana was transformed with the ggpPS gene from the Ξ³-proteobacterium Azotobacter vinelandii coding for a combined GG-phosphate synthase/phosphatase. The heterologous expression of the ggpPS gene led to the accumulation of high amounts of GG. Three independent Arabidopsis lines showing different GG contents were characterized in growth experiments. Plants containing a low (1–2 ΞΌmol gβˆ’1 FM) GG content in leaves showed no altered growth performance under control conditions but an increased salt tolerance, whereas plants accumulating a moderate (2–8 ΞΌmol gβˆ’1 FM) or a high GG content (around 17 ΞΌmol gβˆ’1 FM) showed growth retardation and no improvement of salt resistance. These results indicate that the synthesis of the compatible solute GG has a beneficial effect on plant stress tolerance as long as it is accumulated to an extent that does not negatively interfere with plant metabolism

    Futile Na+ cycling at the root plasma membrane in rice (Oryza sativa L.): kinetics, energetics, and relationship to salinity tolerance

    Get PDF
    Globally, over one-third of irrigated land is affected by salinity, including much of the land under lowland rice cultivation in the tropics, seriously compromising yields of this most important of crop species. However, there remains an insufficient understanding of the cellular basis of salt tolerance in rice. Here, three methods of 24Na+ tracer analysis were used to investigate primary Na+ transport at the root plasma membrane in a salt-tolerant rice cultivar (Pokkali) and a salt-sensitive cultivar (IR29). Futile cycling of Na+ at the plasma membrane of intact roots occurred at both low and elevated levels of steady-state Na+ supply ([Na+]ext=1 mM and 25 mM) in both cultivars. At 25 mM [Na+]ext, a toxic condition for IR29, unidirectional influx and efflux of Na+ in this cultivar, but not in Pokkali, became very high [>100 μmol g (root FW)βˆ’1 hβˆ’1], demonstrating an inability to restrict sodium fluxes. Current models of sodium transport energetics across the plasma membrane in root cells predict that, if the sodium efflux were mediated by Na+/H+ antiport, this toxic scenario would impose a substantial respiratory cost in IR29. This cost is calculated here, and compared with root respiration, which, however, comprised only ∼50% of what would be required to sustain efflux by the antiporter. This suggests that either the conventional β€˜leak-pump’ model of Na+ transport or the energetic model of proton-linked Na+ transport may require some revision. In addition, the lack of suppression of Na+ influx by both K+ and Ca2+, and by the application of the channel inhibitors Cs+, TEA+, and Ba2+, questions the participation of potassium channels and non-selective cation channels in the observed Na+ fluxes

    Arabidopsis Fatty Acid Desaturase FAD2 Is Required for Salt Tolerance during Seed Germination and Early Seedling Growth

    Get PDF
    Fatty acid desaturases play important role in plant responses to abiotic stresses. However, their exact function in plant resistance to salt stress is unknown. In this work, we provide the evidence that FAD2, an endoplasmic reticulum localized Ο‰-6 desaturase, is required for salt tolerance in Arabidopsis. Using vacuolar and plasma membrane vesicles prepared from the leaves of wild-type (Col-0) and the loss-of-function Arabidopsis mutant, fad2, which lacks the functional FAD2, we examined the fatty acid composition and Na+-dependent H+ movements of the isolated vesicles. We observed that, when compared to Col-0, the level of vacuolar and plasma membrane polyunsaturation was lower, and the Na+/H+ exchange activity was reduced in vacuolar and plasma membrane vesicles isolated from fad2 mutant. Consistent with the reduced Na+/H+ exchange activity, fad2 accumulated more Na+ in the cytoplasm of root cells, and was more sensitive to salt stress during seed germination and early seedling growth, as indicated by CoroNa-Green staining, net Na+ efflux and salt tolerance analyses. Our results suggest that FAD2 mediated high-level vacuolar and plasma membrane fatty acid desaturation is essential for the proper function of membrane attached Na+/H+ exchangers, and thereby to maintain a low cytosolic Na+ concentration for salt tolerance during seed germination and early seedling growth in Arabidopsis

    Sport for All in a financial crisis: survival and adaptation in competing organisational models of local authority sport services

    Get PDF

    Isolation and Characterization of Maize PMP3 Genes Involved in Salt Stress Tolerance

    Get PDF
    Plasma membrane protein 3 (PMP3), a class of small hydrophobic polypeptides with high sequence similarity, is responsible for salt, drought, cold, and abscisic acid. These small hydrophobic ploypeptides play important roles in maintenance of ion homeostasis. In this study, eight ZmPMP3 genes were cloned from maize and responsive to salt, drought, cold and abscisic acid. The eight ZmPMP3s were membrane proteins and their sequences in trans-membrane regions were highly conserved. Phylogenetic analysis showed that they were categorized into three groups. All members of group II were responsive to ABA. Functional complementation showed that with the exception of ZmPMP3-6, all were capable of maintaining membrane potential, which in turn allows for regulation of intracellular ion homeostasis. This process was independent of the presence of Ca2+. Lastly, over-expression of ZmPMP3-1 enhanced growth of transgenic Arabidopsis under salt condition. Through expression analysis of deduced downstream genes in transgenic plants, expression levels of three ion transporter genes and four important antioxidant genes in ROS scavenging system were increased significantly in transgenic plants during salt stress. This tolerance was likely achieved through diminishing oxidative stress due to the possibility of ZmPMP3-1's involvement in regulation of ion homeostasis, and suggests that the modulation of these conserved small hydrophobic polypeptides could be an effective way to improve salt tolerance in plants

    A cotton miRNA is involved in regulation of plant response to salt stress

    Get PDF
    The present study functionally identified a new microRNA (microRNA ovual line 5, miRNVL5) with its target gene GhCHR from cotton (Gossypium hirsutum). The sequence of miRNVL5 precursor is 104 nt long, with a well developed secondary structure. GhCHR contains two DC1 and three PHD Cys/His-rich domains, suggesting that GhCHR encodes a zinc-finger domain-containing transcription factor. miRNVL5 and GhCHR express at various developmental stages of cotton. Under salt stress (50Γ’β‚¬β€œ400Ò€‰mM NaCl), miRNVL5 expression was repressed, with concomitant high expression of GhCHR in cotton seedlings. Ectopic expression of GhCHR in Arabidopsis conferred salt stress tolerance by reducing Na+ accumulation in plants and improving primary root growth and biomass. Interestingly, Arabidopsis constitutively expressing miRNVL5 showed hypersensitivity to salt stress. A GhCHR orthorlous gene At2g44380 from Arabidopsis that can be cleaved by miRNVL5 was identified by degradome sequencing, but no confidential miRNVL5 homologs in Arabidopsis have been identified. Microarray analysis of miRNVL5 transgenic Arabidopsis showed six downstream genes (CBF1, CBF2, CBF3, ERF4, AT3G22920, and AT3G49200), which were induced by salt stress in wild-type but repressed in miRNVL5-expressing Arabidopsis. These results indicate that miRNVL5 is involved in regulation of plant response to salt stress

    Membrane transport, sensing and signaling in plant adaptation to environmental stress

    Get PDF
    Plants are generally well adapted to a wide range of environmental conditions. Even though they have notably prospered in our planet, stressful conditions such as salinity, drought and cold or heat, which are increasingly being observed worldwide in the context of the ongoing climate changes, limit their growth and productivity. Behind the remarkable ability of plants to cope with these stresses and still thrive, sophisticated and efficient mechanisms to re-establish and maintain ion and cellular homeostasis are involved. Among the plant arsenal to keep homeostasis are efficient stress sensing and signaling mechanisms, plant cell detoxification systems, compatible solute and osmoprotectant accumulation and a vital rearrangement of solute transport and compartmentation. The key role of solute transport systems and signaling proteins in cellular homeostasis is addressed in the present work. The full understanding of the plant cell complex defense mechanisms under stress may allow for the engineering of more tolerant plants or the optimization of cultivation practices to improve yield and productivity, which is crucial in the present time as food resources are progressively scarce.This work was supported by the Portuguese Foundation for Science and Technology (FCT) (research project ref. PTDC/AGR-ALI/100636/2008; to A. Conde, grant ref. SFRH/BD/47699/2008)

    Natural Variation in Arabidopsis thaliana Revealed a Genetic Network Controlling Germination Under Salt Stress

    Get PDF
    Plant responses to environmental stresses are polygenic and complex traits. In this study quantitative genetics using natural variation in Arabidopsis thaliana was used to investigate the genetic architecture of plant responses to salt stress. Eighty seven A. thaliana accessions were screened and showed a large variation for root development and seed germination under 125 and 200 mM NaCl, respectively. Twenty two quantitative trait loci for these traits have been detected by phenotyping two recombinants inbred line populations, Sha x Col and Sha x Ler. Four QTLs controlling germination under salt were detected in the Sha x Col population. Interestingly, only one allelic combination at these four QTLs inhibits germination under salt stress, implying strong epistatic interactions between them. In this interacting context, we confirmed the effect of one QTL by phenotyping selected heterozygous inbred families. We also showed that this QTL is involved in the control of germination under other stress conditions such as KCl, mannitol, cold, glucose and ABA. Our data highlights the presence of a genetic network which consists of four interacting QTLs and controls germination under limiting environmental conditions
    • …
    corecore