9 research outputs found

    LÀÀnemere kirdeosa pÔhjataimestiku leviku kaardistamine ja modelleerimine pika meriheina Zostera marina Linnaeus, 1753 nÀitel

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneEesti rannikumere pĂ”hjataimestiku uuringute ajalugu ulatub 18. sajandisse. MerepĂ”hjast proovide kogumist sukelduja poolt vĂ”i pinnalt pĂ”hjaammutite abil alustati Eestis 1959. aastal. 2005. aastaks sai eesmĂ€rgiks sĂŒstematiseeritud teabe kogumine ja ulatuslike merealade kaardistamine ning seetĂ”ttu vĂ”eti lisaks kasutusele videouuringud, kaugseire, hakati enam rakendama ruumilist modelleerimist. Videomeetod on teiste meetodite kĂ”rval tĂ€napĂ€evani laialt kasutuses ning videopĂ”hised hinnangud on piisavad pĂ”hjaelustiku kaardistamiseks koosluste tasandil. Kaugseire vĂ”imaldab lĂŒhikese ajaga koguda infot ulatuslike alade kohta. Selle abil saab LÀÀnemeres pĂ”hjakoosluseid kaardistada kuni 6 m sĂŒgavusel rannikuvees ning vĂ€ljatöötatud koosluste klassifikatsiooniskeemid ja levikukaardid vĂ”imaldavad muuhulgas liigipĂ”histe uuringute optimaalsemat planeerimist. Pikk merihein on Eesti rannikumere liivastel pĂ”hjadel ĂŒks olulisemaid vĂ”tmeliike. Meriheina kooslustega seotud liikide arv, kokku 35 pĂ”hjataimestiku ning 33 pĂ”hjaloomastiku liiki, moodustab umbes neljandiku meie merepiirkonna pĂ”hjaelustiku liikide arvust. Aastatel 2005–2015 tuvastati ĂŒle 300 pika meriheina kasvukoha. Ulatulikest uuringutest selgus, et liik on tavapĂ€rane kogu Eesti rannikumeres, vĂ€lja arvatud madala soolsusega Soome lahe idaosas ning PĂ€rnu lahes. Pikk merihein kasvab peamiselt sĂŒgavusvahemikus 2–5 m ning ĂŒle 3 m sĂŒgavusel on see meie liivastel pĂ”hjadel ainus suure tihedusega kooslusi moodustav taim. Pika meriheina levikuala, kus liigi katvus ĂŒletab 10%, on hinnanguliselt 150 km2. Modelleerimine nĂ€itas, et liik on vastupidav suurtele keskkonnatingimuste muutustele ning tuleviku kliima stsenaariumi kohaselt mĂ”jutavad liigi levikut peamiselt merevee soojenemine, vee liikumiskiiruse tĂ”us ning laguneva jÀÀ poolt pĂ”hjustatud mehaaniline hĂ€iring. Meie rannikumere mitmete teiste vĂ”tmeliikide pĂŒsimine on tuleviku kliima tingimustes otseselt ohustatud ning seega on liigilise mitmekesisuse sĂ€ilitamisel ÀÀrmiselt oluline terviklik merekeskkonna kĂ€sitlus. Antud doktoritöö annab selle terviku mĂ”istmiseks olulise panuseThe first phytobenthic investigations in Estonia are known from the 18th century. Sampling of Estonian coastal sea benthic communities began in 1959; the main survey methods were diving and physical sampling of the seabed. Demands for large-scale mapping of marine areas evoke the use of videosampling, remote sensing and spatial modelling. Since 2005 videosampling has been widely used. The continuous video mode is precise enough for mapping benthic macrophyte communities. The used remote sensing classification schemes produced accurate high-resolution maps at 0-6 m depth with a potential to distinguish larger groups of macrophytes. The results provide an important cost-effective input when planning targeted large-scale mapping of e.g. eelgrass. Eelgrass is an ecosystem engineering species in moderately exposed sandy substrates of the NE Baltic Sea. A total of 33 macrophytobenthic and 35 invertebrate taxa were found in samples from eelgrass stands in the coastal waters of Estonia. The findings correspond to about a quarter of the total benthic species richness in the area. In 2005–2015 eelgrass was found in more than 300 locations. The species spreads all over the Estonian coastal sea, except the easternmost low salinity parts of the Gulf of Finland and the turbid and diluted PĂ€rnu Bay. Its main depth range is 2–5 m. The area of eelgrass coverage of higher than 10% is estimated at about 150 km2. Our modelling study showed that eelgrass is very resilient to a broad range of environmental perturbation and that eelgrass is most affected by changes in physical disturbances such as seawater warming, elevated wave-induced current velocity and reduced ice scour. As many of the benthic key species are negatively affected by the expected future climate, a modelling of the cover of eelgrass under the future climate is essential in order to help managers to establish marine protected areas that can resist the projected influences of climate change and thereby minimize the loss of biodiversity

    Liikenne- ja viestintÀministeriön vastuullisuusraportti 2022 : Ministeriön vuoden 2022 toimet kestÀvÀn kehityksen Agenda2030-tavoitteiden saavuttamiseksi

    Get PDF
    Liikenne- ja viestintÀministeriön vastuullisuusraportissa kerrotaan, miten ministeriö on edistÀnyt YK:n kestÀvÀn kehityksen Agenda2030-tavoitteiden saavuttamista vuonna 2022. KestÀvÀn kehityksen edistÀminen ja vastuullisuus ovat mukana kaikessa liikenne- ja viestintÀministeriön toiminnassa. Ekologisen kestÀvyyden parantamisessa ja ilmastonmuutoksen hidastamisessa liikenteen, etenkin tieliikenteen, pÀÀstöjen vÀhentÀminen on keskeistÀ. Toimenpiteet liittyvÀt fossiilisten polttoaineiden korvaamiseen, autokannan uudistamiseen ja liikennejÀrjestelmÀn tehostamiseen, mikÀ tarkoittaa muun muassa kestÀvien liikkumismuotojen osuuden lisÀÀmistÀ ja logistiikan tehostamista tiedon avulla. Taloudellisen kestÀvyyden nÀkökulmasta digitaalisilla yhteyksillÀ, liikenteellÀ ja viestinnÀllÀ on keskeinen merkitys elinkeinoelÀmÀn kilpailukyvylle ja uudistumiselle sekÀ koko Suomen elinvoimalle ja hyvinvoinnille. Sosiaalisen kestÀvyyden kannalta ministeriön työ varmistaa ihmisten perustarpeiden toteutumista. Toimet liittyvÀt esimerkiksi liikenneturvallisuuteen ja liikenne- ja digitaalisten palveluiden esteettömyyteen. Valtiokonttori suosittaa kaikkia valtion virastoja laatimaan toiminnastaan vastuullisuusraportin vuosittain. Agenda2030-tavoitteet ovat Valtiokonttorin ohjeistaman vastuullisuusraportoinnin perusta

    Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation

    Get PDF
    This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe. Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic. Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows. The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them

    Realized niche width of a brackish water submerged aquatic vegetation under current environmental conditions and projected influences of climate change

    No full text
    Little is known about how organisms might respond to multiple climate stressors and this lack of knowledge limits our ability to manage coastal ecosystems under contemporary climate change. Ecological models provide managers and decision makers with greater certainty that the systems affected by their decisions are accurately represented. In this study Boosted Regression Trees modelling was used to relate the cover of submerged aquatic vegetation to the abiotic environment in the brackish Baltic Sea. The analyses showed that the majority of the studied submerged aquatic species are most sensitive to changes in water temperature, current velocity and winter ice scour. Surprisingly, water salinity, turbidity and eutrophication have little impact on the distributional pattern of the studied biota. Both small and large scale environmental variability contributes to the variability of submerged aquatic vegetation. When modelling species distribution under the projected influences of climate change, all of the studied submerged aquatic species appear to be very resilient to a broad range of environmental perturbation and biomass gains are expected when seawater temperature increases. This is mainly because vegetation develops faster in spring and has a longer growing season under the projected climate change scenario

    Mapping bathymetry and shallow water benthic habitats in inland and coastal waters with Sentinel-2

    Get PDF
    Accurate determination of the water depth and benthic macroalgae composition in coastal and inland water bodies is important due to the high commercial and ecological value of these regions. Benthic habitat mapping by conventional methods provides good accuracy, but these methods are very expensive and limited by manpower and time factor, which is necessary for mapping large areas. Remote sensing methods significantly complement contact measurements and give additional information about the hard-to-reach areas. The usefulness of free Sentinel-2 data in bathymetry and habitat mapping has been demonstrated in clear oceanic waters. The aim of this study was to further test the suitability of Sentinel-2 imagery in creating maps of dominant benthic types, as well as in estimating bathymetry in optically complex marine and lake waters. Two study sites were selected to cover a representative range of optical variability - Lake Garda in northern Italy (an intermediate between clear ocean and optically very complex waters) and Viimsi peninsula on the Estonian side of the Gulf of Finland, in the Baltic Sea. The results show that Sentinel-2 imagery with 10 m spatial resolution is suitable for bathymetry and habitat mapping in optically complex inland and coastal waters. Our results show that bathymetry mapping is sufficiently accurate in waters less than 4 m deep in the case of the Baltic Sea and up to 7 m deep in Lake Garda.  In such depths, the R2 was above 0.93 in all four Sentinel-2 images used in the study. Bottom type mapping accuracy was in all cases over 73%, which is considered to be good, but due to the limited number of sampling points in both test sites, further studies are needed. The Sentinel-2 data quality and no cost of the imagery for users make it very useful for mapping bathymetry and shallow water habitats over large coastal areas or high number of lakes, especially in hard to reach by in situ methods areas. Moreover, the frequent revisit time allows moving from one-off maps to monitoring of temporal changes happening in dynamic shallow inland and coastal waters

    The quest for seafloor macrolitter: A critical review of background knowledge, current methods and future prospects

    Get PDF
    The seafloor covers some 70% of the Earth’s surface and has been recognised as a major sink for marine litter. Still, litter on the seafloor is the least investigated fraction of marine litter, which is not surprising as most of it lies in the deep sea, i.e. the least explored ecosystem. Although marine litter is considered a major threat for the oceans, monitoring frameworks are still being set up. This paper reviews current knowledge and methods, identifies existing needs, and points to future developments that are required to address the estimation of seafloor macrolitter. It provides background knowledge and conveys the views and thoughts of scientific experts on seafloor marine litter offering a review of monitoring and ocean modelling techniques. Knowledge gaps that need to be tackled, data needs for modelling, and data comparability and harmonisation are also discussed. In addition, it shows how research on seafloor macrolitter can inform international protection and conservation frameworks to prioritise efforts and measures against marine litter and its deleterious impacts

    The quest for seafloor macrolitter : a critical review of background knowledge, current methods and future prospects

    Get PDF
    The seafloor covers some 70% of the Earth’s surface and has been recognised as a major sink for marine litter. Still, litter on the seafloor is the least investigated fraction of marine litter, which is not surprising as most of it lies in the deep sea, i.e. the least explored ecosystem. Although marine litter is considered a major threat for the oceans, monitoring frameworks are still being set up. This paper reviews current knowledge and methods, identifies existing needs, and points to future developments that are required to address the estimation of seafloor macrolitter. It provides background knowledge and conveys the views and thoughts of scientific experts on seafloor marine litter offering a review of monitoring and ocean modelling techniques. Knowledge gaps that need to be tackled, data needs for modelling, and data comparability and harmonisation are also discussed. In addition, it shows how research on seafloor macrolitter can inform international protection and conservation frameworks to prioritise efforts and measures against marine litter and its deleterious impacts
    corecore