16 research outputs found

    CORRELAÇÃO ENTRE UNIFORMIDADE E NDVI EM POVOAMENTOS DE Tectona grandis L. f.

    Get PDF
    A busca por produtos provindos de Teca é crescente, devido suas características físico-mecânicas. Seu cultivo é cada vez maior em função do valor agregado da madeira. Visando minimizar o ciclo para obtenção de seus produtos, se faz necessário métodos que permitam acompanhar e identificar a qualidade dos plantios. Com isso, o manejo florestal e o sensoriamento remoto auxiliam na seleção de instrumentos de análise para plantios comerciais. O índice de uniformidade auxilia nas tomadas de decisões na qualidade silvicultural dos plantios. Este trabalho buscou correlações entre uniformidade e NDVI para investigar o desenvolvimento da Teca. Foram utilizadas imagens do Landsat8-OLI para obtenção do NDVI e valores de reflectância da Banda 6. A cultura de Teca foi implementada no ano de 2005. Os dados de campo foram provenientes de inventários florestais realizados a cada dois anos a partir do segundo após o plantio. Foram utilizados dados de altura dos inventários executados em maio de 2014 e 2016. Tendo idades de 9 e 11 anos, respectivamente. Os talhões utilizados foram 88, 89, 90, 91, 92 e 93. Foram mensuradas as alturas das árvores em 47 parcelas com área de aproximadamente 1.551 m² cada. Posteriormente, foi calculado o índice de uniformidade. A correlação foi feita através do coeficiente de correlação de Pearson. Os resultados do trabalho mostram ser possível acompanhar o desenvolvimento da Teca com a utilização de imagens de satélite em conjunto com dados de inventário florestal

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Correlação linear e espacial entre a resistência do solo ao penetrômetro e a produtividade do feijoeiro irrigado

    No full text
    A resistência do solo ao penetrômetro exerce grande influência sobre o crescimento e desenvolvimento vegetal, uma vez que o crescimento das raízes, assim como o rendimento das culturas, varia de forma inversamente proporcional ao seu valor. Dessa forma, a análise da variabilidade espacial da resistência do solo ao penetrômetro e da produtividade, por meio da geoestatística, pode indicar alternativas de manejo para reduzir os efeitos da variabilidade do solo sobre a produtividade e também melhorar a estimativa de respostas das culturas sob determinadas práticas de manejo. Diante do exposto, o objetivo deste trabalho foi relacionar e caracterizar a variabilidade espacial da resistência do solo ao penetrômetro (RP) e a produtividade do feijoeiro irrigado em sistema de semeadura direta, em duas safras consecutivas. O experimento foi realizado em Latossolo Vermelho distroférrico típico, no campo experimental da Faculdade de Engenharia Agrícola da Unicamp, no município de Campinas-SP, cujas coordenadas geográficas são: 22 ° 48 ' 57 " de latitude sul, 47 ° 03 ' 33 " de longitude oeste e altitude média de 640 m. As avaliações foram realizadas em uma malha regular de amostragem de 3 x 3 m, totalizando 60 pontos amostrais por parcela. A análise da dependência espacial foi avaliada pela geoestatística, e os parâmetros dos semivariogramas utilizados para construir mapas de isolinhas, por meio do interpolador de krigagem do programa Surfer 8.0. A regressão linear simples entre mapas (pixel-a-pixel) mostrou correlação negativa entre os valores de RP e a produtividade; no entanto, a produtividade do feijoeiro irrigado apresentou baixa correlação com a resistência do solo ao penetrômetro em sistema semeadura direta nas duas safras

    Linear and spatial correlation between the soil penetration resistance and irrigated bean yield

    No full text
    Soil penetration resistance exercises major influence on crop development, root growth and crop productivity, which is inversely proportional to that soil attribute. In this way, the analysis of spatial variability of soil penetration resistance and crop yield based on geostatistics can indicate alternative management practices, not only to reduce the effects of soil variability on crop yield, but also to improve the estimated crop response under certain management practices. This study aimed to correlate soil penetration resistance (RP) and spatial yield variability in irrigated no-till snapbean cultivation in two consecutive cycles. The experiment was carried out on a typical dystrophic Red Latosol (Oxisol), in an experimental field of the FEAGRI/UNICAMP, in Campinas-SP (lat 22 ° 48 ' 57S, long 47 ° 03 ' 33W, mean altitude of 640 m asl). The evaluations were performed in a regular sampling grid of 3 x 3 m, totaling 60 points per treatment. Spatial dependence was evaluated by geostatistical techniques as well as semivariogram parameters to generate isoline maps, by means of kriging interpolation, using program Surfer 8.0. The simple linear regression between maps (pixel-to-pixel) detected an inverse correlation between RP and crop yield, whereas the bean yield was loosely correlated with soil penetration resistance under irrigated no-till system in the studied growing seasons.A resistência do solo ao penetrômetro exerce grande influência sobre o crescimento e desenvolvimento vegetal, uma vez que o crescimento das raízes, assim como o rendimento das culturas, varia de forma inversamente proporcional ao seu valor. Dessa forma, a análise da variabilidade espacial da resistência do solo ao penetrômetro e da produtividade, por meio da geoestatística, pode indicar alternativas de manejo para reduzir os efeitos da variabilidade do solo sobre a produtividade e também melhorar a estimativa de respostas das culturas sob determinadas práticas de manejo. Diante do exposto, o objetivo deste trabalho foi relacionar e caracterizar a variabilidade espacial da resistência do solo ao penetrômetro (RP) e a produtividade do feijoeiro irrigado em sistema de semeadura direta, em duas safras consecutivas. O experimento foi realizado em Latossolo Vermelho distroférrico típico, no campo experimental da Faculdade de Engenharia Agrícola da Unicamp, no município de Campinas-SP, cujas coordenadas geográficas são: 22 ° 48 ' 57de latitude sul, 47 ° 03 ' 33de longitude oeste e altitude média de 640 m. As avaliações foram realizadas em uma malha regular de amostragem de 3 x 3 m, totalizando 60 pontos amostrais por parcela. A análise da dependência espacial foi avaliada pela geoestatística, e os parâmetros dos semivariogramas utilizados para construir mapas de isolinhas, por meio do interpolador de krigagem do programa Surfer 8.0. A regressão linear simples entre mapas (pixel-a-pixel) mostrou correlação negativa entre os valores de RP e a produtividade; no entanto, a produtividade do feijoeiro irrigado apresentou baixa correlação com a resistência do solo ao penetrômetro em sistema semeadura direta nas duas safras.1827183

    Seminário de Dissertação (2024)

    No full text
    Página da disciplina de Seminário de Dissertação (MPPP, UFPE, 2022) Lista de participantes == https://docs.google.com/spreadsheets/d/1mrULe1y04yPxHUBaF50jhaM1OY8QYJ3zva4N4yvm198/edit#gid=

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
    corecore