40 research outputs found

    Fast Integrated Spectra Analyzer: A New Computational Tool For Age and Reddening Determination of Small Angular Diameter Open Clusters

    Full text link
    We present a new algorithm called 'Fast Integrated Spectra Analyzer" (FISA) that permits fast and reasonably accurate age and reddening determinations for small angular diameter open clusters by using their integrated spectra in the (3600-7400) \AA \ range and currently available template spectrum libraries. This algorithm and its implementation help to achieve astrophysical results in shorter times than from other methods. A brief review is given of the integrated spectroscopic technique applied to the study of open clusters as well as the basic assumptions that justify its use. We describe the numerical algorithm employed in detail, show examples of its application, and provide a link to the code. Our method has successfully been applied to integrated spectroscopy of open clusters, both in the Galaxy and in the Magellanic Clouds, to determine ages and reddenings.Comment: 27 Pages, 7 Figures, 1 table. Accepted to PAS

    Temporal coherence of ultrashort high-order harmonic pulses

    Get PDF
    We have studied the temporal coherence of high-order harmonics (up to the 15th order) produced by focusing 100 fs laser pulses into an argon gas jet. We measure the visibility of the interference fringes, produced when two spatially separated harmonic sources interfere in the far field, as a function of the time delay between the two sources. In general, we find long coherence times, comparable to the expected pulse durations of the harmonics. For some of the harmonics, the interference pattern exhibits two regions, with significantly different coherence times. These results are interpreted in terms of different electronic trajectories contributing to harmonic generation. © 1998 American Physical Society

    Temporal coherence of high-order harmonics

    Get PDF
    Systematic studies of the temporal coherence properties of high-order harmonic radiation are presented. These complement our previous investigations [Bellini et al., Phys. Rev. Lett. 81, 297 (1998)], where we showed the separation of the far-field pattern of high-order harmonics into two distinct spatial regions with different coherence times. Here we show how the coherence time of the inner and outer regions changes as a function of the harmonic order, the laser intensity, and the focusing conditions. Good agreement with the predictions of the semiclassical model of harmonic generation is obtained. © 1999 The American Physical Society

    NGC 2401: A template of the Norma-Cygnus Arm's young population in the Third Galactic Quadrant

    Full text link
    Based on a deep optical CCD (UBV(RI)_C) photometric survey and on the Two-Micron All-Sky-Survey (2MASS) data we derived the main parameters of the open cluster NGC 2401. We found this cluster is placed at 6.3 ±\pm 0.5 kpc (V_O - M_V = 14.0 \pm 0.2) from the Sun and is 25 Myr old, what allows us to identify NGC 2401 as a member of the young population belonging to the innermost side of the extension of the Norma-Cygnus spiral--arm in the Third Galactic Quadrant. A spectroscopic study of the emission star LSS 440 that lies in the cluster area revealed it is a B0Ve star; however, we could not confirm it is a cluster member. We also constructed the cluster luminosity function (LF) down to V∌22V \sim 22 and the cluster initial mass function (IMF) for all stars with masses above M \sim 1-2 M_{\sun}. It was found that the slope of the cluster IMF is x≈1.8±0.2x \approx 1.8 \pm 0.2. The presence of a probable PMS star population associated to the cluster is weakly revealed.Comment: 10 paginas, 11 eps figures, accepted for publication in MNRA

    Star clusters in the Carina complex: UBVRI photometry of NGC3114, Collinder228 and vdB-Hagen99

    Get PDF
    In this paper we present and analyze CCD UBVRIUBVRI photometry in the region of the three young open clusters NGC 3114, Collinder~228, and vdB-Hagen~99,Comment: 11 pages, 15 figures, accepted for publication in A&

    VUV frequency combs from below-threshold harmonics

    Get PDF
    Recent demonstrations of high-harmonic generation (HHG) at very high repetition frequencies (~100 MHz) may allow for the revolutionary transfer of frequency combs to the vacuum ultraviolet (VUV). This advance necessitates unifying optical frequency comb technology with strong-field atomic physics. While strong-field studies of HHG have often focused on above-threshold harmonic generation (photon energy above the ionization potential), for VUV frequency combs an understanding of below-threshold harmonic orders and their generation process is crucial. Here we present a new and quantitative study of the harmonics 7-13 generated below and near the ionization threshold in xenon gas. We show multiple generation pathways for these harmonics that are manifested as on-axis interference in the harmonic yield. This discovery provides a new understanding of the strong-field, below-threshold dynamics under the influence of an atomic potential and allows us to quantitatively assess the achievable coherence of a VUV frequency comb generated through below threshold harmonics. We find that under reasonable experimental conditions temporal coherence is maintained. As evidence we present the first explicit VUV frequency comb structure beyond the 3rd harmonic.Comment: 16 pages, 4 figures, 1 tabl

    A study of the Galactic plane towards l = 305

    Get PDF
    We present optical (UBVICUBVI_C) observations of a rich and complex field in the Galactic plane towards l∌305∘l \sim 305^{\circ} and b∌0∘b \sim 0^{\circ}. Our analysis reveals a significantly high interstellar absorbtion (AV∌10A_V \sim 10) and an abnormal extinction law in this line of sight. Availing a considerable number of color combinations, the photometric diagrams allow us to derive new estimates of the fundamental parameters of the two open clusters Danks~1 and Danks~2. Due to the derived abnormal reddening law in this line of sight, both clusters appear much closer (to the Sun) than previously thought. % Additionally, we present the optical colors and magnitudes of the WR~48a star and its main parameters were estimated. The properties of the two embedded clusters DBS2003~130 and 131, are also addressed. We identify a number of Young Stellar Objects which are probable members of these clusters. This new material is then used to revisit the spiral structure in this sector of the Galaxy showing evidence of populations associated with the inner Galaxy Scutum-Crux arm

    New isolated planetary mass objects and the stellar and substellar mass function of the sigma Orionis cluster

    Full text link
    We report on our analysis of the VISTA Orion ZYJHKs photometric data (completeness magnitudes Z=22.6 and J=21.0mag) focusing on a circular area of 2798.4 arcmin^2 around the young sigma Orionis star cluster (~3Myr, ~352pc, solar metallicity). The combination of the VISTA photometry with optical, WISE and Spitzer data allows us to identify a total of 210 cluster member candidates with masses in the interval 0.25-0.004Msun, 23 of which are new planetary-mass object findings. These discoveries double the number of cluster planetary-mass candidates known so far. One object has colors compatible with a T spectral type. The cluster harbors about as many brown dwarfs (69, 0.072-0.012Msun) and planetary-mass objects (37, 0.012-0.004Msun) as very low-mass stars (104, 0.25-0.072Msun). Based on Spitzer data, we derive a disk frequency of ~40% for very low-mass stars, brown dwarfs, and planetary mass objects in sigma Orionis. The radial density distributions of these three mass intervals are alike: all are spatially concentrated within an effective radius of 12arcmin (1.2pc) around the multiple star sigma Ori, and no obvious segregation between disk-bearing and diskless objects is observed. Using the VISTA data and the Mayrit catalog, we derive the cluster mass spectrum (DeltaN/DeltaM ~ M^{-alpha}) from ~19 to 0.006Msun (VISTA ZJ completeness), which is reasonably described by two power-law expressions with indices of alpha=1.7+/-0.2 for M>0.35Msun, and alpha=0.6+/-0.2 for M<0.35Msun. The sigma Orionis mass spectrum smoothly extends into the planetary-mass regime down to 0.004Msun. Our findings of T-type sources (<0.004Msun) in the VISTA sigma Orionis exploration appear to be smaller than what is predicted by the extrapolation of the cluster mass spectrum down to the survey J-band completeness.Comment: Accepted for publication in ApJ. 69 pages, 15 figure

    Building the cosmic distance scale: from Hipparcos to Gaia

    Get PDF
    Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys. 439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20000 stars with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in June 2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC, we will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF, Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in Astrophysics & Space Scienc

    X-ray harmonic comb from relativistic electron spikes

    Get PDF
    X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the 'water window' range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathematical catastrophe theory, which explains sudden changes in various complex systems, from physics to social sciences. The new X-ray source has advantageous scalings, as the maximum harmonic order is proportional to the cube of the laser amplitude enhanced by relativistic self-focusing in plasma. This allows straightforward extension of the coherent X-ray generation to the keV and tens of keV spectral regions. The implemented X-ray source is remarkably easily accessible: the requirements for the laser can be met in a university-scale laboratory, the gas jet is a replenishable debris-free target, and the harmonics emanate directly from the gas jet without additional devices. Our results open the way to a compact coherent ultrashort brilliant X-ray source with single shot and high-repetition rate capabilities, suitable for numerous applications and diagnostics in many research fields
    corecore