515 research outputs found

    A Comparative Analysis Shows Morphofunctional Differences between the Rat and Mouse Melanin-Concentrating Hormone Systems

    Get PDF
    Sub-populations of neurons producing melanin-concentrating hormone (MCH) are characterized by distinct projection patterns, birthdates and CART/NK3 expression in rat. Evidence for such sub-populations has not been reported in other species. However, given that genetically engineered mouse lines are now commonly used as experimental models, a better characterization of the anatomy and morphofunctionnal organization of MCH system in this species is then necessary. Combining multiple immunohistochemistry experiments with in situ hybridization, tract tracing or BrdU injections, evidence supporting the hypothesis that rat and mouse MCH systems are not identical was obtained: sub-populations of MCH neurons also exist in mouse, but their relative abundance is different. Furthermore, divergences in the distribution of MCH axons were observed, in particular in the ventromedial hypothalamus. These differences suggest that rat and mouse MCH neurons are differentially involved in anatomical networks that control feeding and the sleep/wake cycle

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    On tail trend detection: modeling relative risk

    Get PDF
    The climate change dispute is about changes over time of environmental characteristics (such as rainfall). Some people say that a possible change is not so much in the mean but rather in the extreme phenomena (that is, the average rainfall may not change much but heavy storms may become more or less frequent). The paper studies changes over time in the probability that some high threshold is exceeded. The model is such that the threshold does not need to be specified, the results hold for any high threshold. For simplicity a certain linear trend is studied depending on one real parameter. Estimation and testing procedures (is there a trend?) are developed. Simulation results are presented. The method is applied to trends in heavy rainfall at 18 gauging stations across Germany and The Netherlands. A tentative conclusion is that the trend seems to depend on whether or not a station is close to the sea.Comment: 38 page

    Pivotal Role of the α2A-Adrenoceptor in Producing Inflammation and Organ Injury in a Rat Model of Sepsis

    Get PDF
    Background: Norepinephrine (NE) modulates the responsiveness of macrophages to proinflammatory stimuli through the activation of adrenergic receptors (ARs). Being part of the stress response, early increases of NE in sepsis sustain adverse systemic inflammatory responses. The intestine is an important source of NE release in the early stage of cecal ligation and puncture (CLP)-induced sepsis in rats, which then stimulates TNF-a production in Kupffer cells (KCs) through the activation of the a2-AR. It is important to know which of the three a2-AR subtypes (i.e., a2A, a2B or a2C) is responsible for the upregulation of TNF-a production. The aim of this study was to determine the contribution of a2A-AR in this process. Methodology/Principal Findings: Adult male rats underwent CLP and KCs were isolated 2 h later. Gene expression of a2A-AR was determined. In additional experiments, cultured KCs were incubated with NE with or without BRL-44408 maleate, a specific a2A-AR antagonist, and intraportal infusion of NE for 2 h with or without BRL-44408 maleate was carried out in normal animals. Finally, the impact of a2A-AR activation by NE was investigated under inflammatory conditions (i.e., endotoxemia and CLP). Gene expression of the a2A-AR subtype was significantly upregulated after CLP. NE increased the release of TNF-a in cultured KCs, which was specifically inhibited by the a2A-AR antagonist BRL-44408. Equally, intraportal NE infusion increased TNF-a gene expression in KCs and plasma TNF-a which was also abrogated by co-administration of BRL-44408. NE also potentiated LPS-induced TNF-a release via the a2A-AR in vitro and in vivo. This potentiation of TNF-a release by NE was mediated through the a2A-AR coupled Gai protein and the activation of the p38 MAP kinase. Treatment of septic animals with BRL-44408 suppressed TNF-a, prevented multiple organ injury and significantly improved survival from 45% to 75%. Conclusions/Significance: Our novel finding is that hyperresponsiveness to a2-AR stimulation observed in sepsis is primarily due to an increase in a2A-AR expression in KCs. This appears to be in part responsible for the increased proinflammatory response and ensuing organ injury in sepsis. These findings provide important feasibility information for further developing the a2A-AR antagonist as a new therapy for sepsis

    Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism

    Full text link
    Morphogens act in developing tissues to control the spatial arrangement of cellular differentiation(1,2). The activity of a morphogen has generally been viewed as a concentration-dependent response to a diffusible signal, but the duration of morphogen signalling can also affect cellular responses(3). One such example is the morphogen sonic hedgehog (SHH). In the vertebrate central nervous system and limbs, the pattern of cellular differentiation is controlled by both the amount and the time of SHH exposure(4-7). How these two parameters are interpreted at a cellular level has been unclear. Here we provide evidence that changing the concentration or duration of SHH has an equivalent effect on intracellular signalling. Chick neural cells convert different concentrations of SHH into time-limited periods of signal transduction, such that signal duration is proportional to SHH concentration. This depends on the gradual desensitization of cells to ongoing SHH exposure, mediated by the SHH-dependent upregulation of patched 1 (PTC1), a ligand-binding inhibitor of SHH signalling(8). Thus, in addition to its role in shaping the SHH gradient(8-10), PTC1 participates cell autonomously in gradient sensing. Together, the data reveal a novel strategy for morphogen interpretation, in which the temporal adaptation of cells to a morphogen integrates the concentration and duration of a signal to control differential gene expression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62511/1/nature06347.pd

    Association of Inherited Variation in Toll-Like Receptor Genes with Malignant Melanoma Susceptibility and Survival

    Get PDF
    The family of Toll-like receptors (TLRs) is critical in linking innate and acquired immunity. Polymorphisms in the genes encoding TLRs have been associated with autoimmune diseases and cancer. We investigated the genetic variation of TLR genes and its potential impact on melanoma susceptibility and patient survival. The study included 763 cutaneous melanoma cases recruited in Germany and 736 matched controls that were genotyped for 47 single nucleotide polymorphisms (SNPs) in 8 TLR genes. The relationship between genotype, disease status and survival was investigated taking into account patient and tumor characteristics, and melanoma treatment. Analysis of 7 SNPs in TLR2, 7 SNPs in TLR3 and 8 SNPs in TLR4 showed statistically significant differences in distribution of inferred haplotypes between cases and controls. No individual polymorphism was associated with disease susceptibility except for the observed tendency for TLR2-rs3804099 (odds ratio OR  = 1.15, 95% CI 0.99–1.34, p = 0.07) and TLR4-rs2149356 (OR = 0.85, 95% CI 0.73–1.00, p = 0.06). Both polymorphisms were part of the haplotypes associated with risk modulation. An improved overall survival (Hazard ratio HR 0.53, 95% CI 0.32–0.88) and survival following metastasis (HR 0.55, 95% CI 0.34–0.91) were observed in carriers of the variant allele (D299G) of TLR4-rs4986790. In addition various TLR2, TLR4 and TLR5 haplotypes were associated with increased overall survival. Our results point to a novel association between TLR gene variants and haplotypes with melanoma survival. Our data suggest a role for the D299G polymorphism in the TLR4 gene in overall survival and a potential link with systemic treatment at stage IV of the disease. The polymorphic amino acid residue, located in the ectodomain of TLR4, can have functional consequences

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore