37 research outputs found

    Comparison of in vitro and in situ plankton production determinations

    Get PDF
    Plankton production was measured using 8 techniques at 4 stations in the Celtic Sea, North Atlantic Ocean, in April 2002. Primary production (PP) was derived from 14C incorporation into particulate carbon after 24 h simulated in situ, PP(14CSIS), and 2 h photosynthesis-irradiance incubations, PP(14CPUR), and from 2 published satellite algorithms, PP(VGPM) and PP (M91). Gross production (GP) was calculated from O2 evolution, GP(O2), and 18O enrichment of dissolved O 2, GP(18O), after 24 h simulated in situ incubations, and from in situ active fluorescence measured by fast repetition rate fluorometry (FRRF). Net community production (NCP) was determined from changes in in situ dissolved oxygen, NCP(?O2), and from changes in oxygen during 24 h simulated in situ incubations, NCP(O2). Dark community respiration (DCR) was derived from changes in oxygen during a 24 h dark incubation, DCR(O2), and daily oxygen uptake, DOU(18O, O2), was calculated from the difference between GP(18O) and NCP(O2). Three stations were dominated by picoautotrophs and the fourth station was dominated by diatoms. While most of the comparisons between techniques fell within previously published ranges, 2 anomalies occurred only at the diatom-dominated station. Rates of PP(14CPUR) were oxygen uptake in the dark. The low rates of PP( 14CPUR) in relation to PP(14CSIS) may have resulted from the heterogeneous nature of the bloom and differences in sampling time. However, it is also possible that dissolved organic material (DOM) released by the stressed diatom population restricted the diffusion of 14C into the cells, thereby causing a greater underestimate of PP by techniques using short incubations. The significantly higher rates of oxygen uptake in the light are difficult to reconcile, and we do not know whether the light enhanced oxygen uptake was directly linked to carbon fixation. However, the release of DOM may also have provided substrate for enhanced respiration in the light. These anomalies were only revealed through the concurrent measurement of plankton production by this wide range of techniques. Further investigation of DOM excretion and light-enhanced respiration during diatom blooms is warranted

    Evaluating triple oxygen isotope estimates of gross primary production at the Hawaii Ocean Time-series and Bermuda Atlantic Time-series Study sites

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C05012, doi:10.1029/2010JC006856.The triple oxygen isotopic composition of dissolved oxygen (17Δ) is a promising tracer of gross oxygen productivity (P) in the ocean. Recent studies have inferred a high and variable ratio of P to 14C net primary productivity (12–24 h incubations) (e.g., P:NPP(14C) of 5–10) using the 17Δ tracer method, which implies a very low efficiency of phytoplankton growth rates relative to gross photosynthetic rates. We added oxygen isotopes to a one-dimensional mixed layer model to assess the role of physical dynamics in potentially biasing estimates of P using the 17Δ tracer method at the Bermuda Atlantic Time-series Study (BATS) and Hawaii Ocean Time-series (HOT). Model results were compared to multiyear observations at each site. Entrainment of high 17Δ thermocline water into the mixed layer was the largest source of error in estimating P from mixed layer 17Δ. At both BATS and HOT, entrainment bias was significant throughout the year and resulted in an annually averaged overestimate of mixed layer P of 60 to 80%. When the entrainment bias is corrected for, P calculated from observed 17Δ and 14C productivity incubations results in a gross:net productivity ratio of 2.6 (+0.9 −0.8) at BATS. At HOT a gross:net ratio decreasing linearly from 3.0 (+1.0 −0.8) at the surface to 1.4 (+0.6 −0.6) at depth best reproduced observations. In the seasonal thermocline at BATS, however, a significantly higher gross:net ratio or large lateral fluxes of 17Δ must be invoked to explain 17Δ field observations.We acknowledge support from Center for Microbial Oceanography Research and Education (CMORE) (NSF EF-0424599) and NOAA Global Carbon Program (NA 100AR4310093). BL thanks the USA-Israel Binational Science Foundation for supporting his project at BATS.2012-11-0

    Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters

    Get PDF
    The isotopic compositions of oxygen and hydrogen in ice cores are invaluable tools for the reconstruction of past climate variations. Used alone, they give insights into the variations of the local temperature, whereas taken together they can provide information on the climatic conditions at the point of origin of the moisture. However, recent analyses of snow from shallow pits indicate that the climatic signal can become erased in very low accumulation regions, due to local processes of snow reworking. The signal-to-noise ratio decreases and the climatic signal can then only be retrieved using stacks of several snow pits. Obviously, the signal is not completely lost at this stage, otherwise it would be impossible to extract valuable climate information from ice cores as has been done, for instance, for the last glaciation. To better understand how the climatic signal is passed from the precipitation to the snow, we present here results from varied snow samples from East Antarctica. First, we look at the relationship between isotopes and temperature from a geographical point of view, using results from three traverses across Antarctica, to see how the relationship is built up through the distillation process. We also take advantage of these measures to see how second-order parameters (d-excess and O-17-excess) are related to delta O-18 and how they are controlled. d-excess increases in the interior of the continent (i.e., when delta O-18 decreases), due to the distillation process, whereas O-17-excess decreases in remote areas, due to kinetic fractionation at low temperature. In both cases, these changes are associated with the loss of original information regarding the source. Then, we look at the same relationships in precipitation samples collected over 1 year at Dome C and Vostok, as well as in surface snow at Dome C. We note that the slope of the delta O-18 vs. temperature (T) relationship decreases in these samples compared to those from the traverses, and thus caution is advocated when using spatial slopes for past climate reconstruction. The second-order parameters behave in the same way in the precipitation as in the surface snow from traverses, indicating that similar processes are active and that their interpretation in terms of source climatic parameters is strongly complicated by local temperature effects in East Antarctica. Finally we check if the same relationships between delta O-18 and second-order parameters are also found in the snow from four snow pits. While the d-excess remains opposed to delta O-18 in most snow pits, the O-17-excess is no longer positively correlated to delta O-18 and even shows anti-correlation to delta O-18 at Vostok. This may be due to a stratospheric influence at this site and/or to post-deposition processes

    Conversion of O 2

    No full text

    Combined Analysis of Water Stable Isotopes (H216O,H217O,H218O,HD16OH_{2}^{16}O, H_{2}^{17}O, H_{2}^{18}O, HD^{16}O) in Ice Cores

    Get PDF
    Water stable isotopes are currently measured in polar ice cores. The long records of δ18Oδ_{18}O and δD provide unique information on the past polar temperature while the combination of δ18Oδ_{18}O and δD constrains the evolution of the oceanic evaporative regions. Recently, new analytical developments have made it possible to measure with high precision a new isotopic ratio in water, δ17Oδ_{17}O. As for δD and δ180δ_{18}0, the combination of δ170δ_{17}0 and δ180δ_{18}0 shows a high dependence with the climatic conditions during evaporation. Based on measurements of the different isotopic ratios in Antarctica surface snow, we show that while the combination of δ180δ_{18}0 and δD in the so-called d-excess displays variation with local climatic conditions in the polar regions in addition to the influence of the evaporative regions, the combination of δ170δ_{17}0 and δ180δ_{18}0 in the so-called 17Oexcess^{17}O_{excess} is not modified during the air mass transportation above the polar regions. This makes 17Oexcess^{17}O_{excess} a simpler parameter than d-excess to constrain the evolution of the oceanic evaporative regions. Finally, records of d-excess and 17Oexcess^{17}O_{excess} over the deglaciation in the Vostok ice core suggest significant changes in the evaporative regions. Our interpretation is that the relative humidity over the ocean was higher during the glacial period than today and that reevaporation increased over the deglaciation.IV. Chemical properties and isotope

    Mass-Dependent Isotopic Fractionation in Ozone Produced by Electrolysis

    No full text
    International audienceDuring the electrolysis of water in an acidified medium, ozone is produced, in association with oxygen, at the anode. This ozone is found to be depleted in heavy isotopes (18O and 17O), with respect to the source water, following a strict mass-dependent rule. Our experiments also suggest that the isotopes are distributed at the apex and base positions of the bent ozone molecule in a random fashion, without obeying the zero-point energy constraint. Endowed with these characteristics, the electrolytic ozone provides a source of reference that has a known internal heavy isotope distribution for spectroscopic studies. In addition, this ozone, when subjected to photolytic decomposition, can be used as a source of atomic oxygen with mass-dependent isotope ratios that can be varied by simply changing the water composition. Such an oxygen source is important for studying isotope effects in gas-phase recombination/exchange reactions such as COO + O* → [COOO*] → COO* + O

    Record of δ18^{18}O and 17^{17}O-excess in ice from Vostok Antarctica during the last 150,000 years

    No full text
    International audienceWe measured δ17^{17}O and 18^{18}O in recent Antarctic snow and down the Vostok ice core and calculated the excess of 17^{17}O with respect to VSMOW. The magnitude of the 17^{17}O excess in the Holocene and the last interglacial is ~45 per meg, and it remains constant in a transect from the coast to the continental interior. Analysis of the transect data shows that the 17^{17}O-excess is not sensitive to temperature variations over the continent. There are significant shifts in 17^{17}O-excess from low values in glacial to high values in interglacial times. The observed shifts suggest higher normalized relative humidity and/or wind speeds over the source oceanic regions in glacial times
    corecore