10 research outputs found

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial

    No full text
    &lt;p&gt;&lt;b&gt;Background&lt;/b&gt; Ivabradine specifically inhibits the I-f current in the sinoatrial node to lower heart rate, without affecting other aspects of cardiac function. We aimed to test whether lowering the heart rate with ivabradine reduces cardiovascular death and morbidity in patients with coronary artery disease and left-ventricular systolic dysfunction.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods&lt;/b&gt; Between December, 2004, and December, 2006, we screened 12473 patients at 781 centres in 33 countries. We enrolled 10 917 eligible patients who had coronary artery disease and a left-ventricular ejection fraction of less than 40% in a randomised, double-blind, placebo-controlled, parallel-group trial. 5479 patients received 5 mg ivabradine, with the intention of increasing to the target dose of 7.5 mg twice a day, and 5438 received matched placebo in addition to appropriate cardiovascular medication. The primary endpoint was a composite of cardiovascular death admission to hospital for acute myocardial infarction, and admission to hospital for new onset or worsening heart failure. We analysed patients by intention to treat. The study is registered with ClinicalTrials.gov, number NCT00143507.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Findings&lt;/b&gt; Mean heart rate at baseline was 71.6 (SD 9.9) beats per minute (bpm). Median follow-tip was 19 months (IQR 16-24). Ivabradine reduced heart rate by 6 bpm (S E 0.2) at 12 months, corrected for placebo. Most (87%) patients were receiving beta blockers in addition to study drugs, and no safety concerns were identified. Ivabradine did not affect the primary composite endpoint (hazard ratio 1. 00, 95% CI 0 . 91-1. 1, p=0 . 94). 1233 (22 . 5%) patients in the ivabradine group had serious adverse events, compared with 1239 (22.8%) controls (p=0.70). In a prespecified subgroup of patients with heart rate of 70 bpm or greater, ivabradine treatment did not affect the primary composite outcome (hazard ratio 0 . 91, 95% CI 0 . 81-1.04, p=0.17), cardiovascular death, or admission to hospital for new-onset or worsening heart failure. However, it did reduce secondary endpoints: admission to hospital for fatal and non-fatal myocardial infarction (0 . 64, 95% CI 0 . 49-0 . 84, p=0 . 001) and coronary revascularisation (0. 70, 95% CI 0 . 52-0.93, p=0 .016).&lt;/p&gt; &lt;p&gt;&lt;b&gt;Interpretation&lt;/b&gt; Reduction in heart rate with ivabradine does not improve cardiac outcomes in all patients with stable coronary artery disease and left-ventricular systolic dysfunction, but could be used to reduce the incidence of coronary artery disease outcomes in a subgroup of patients who have heart rates of 70 bprn or greater.&lt;/p&gt

    Ecological genomics of local adaptation

    No full text

    A Survey of Empirical Results on Program Slicing

    No full text
    International audienceBACKGROUND:Patients with peripheral artery disease have an increased risk of cardiovascular morbidity and mortality. Antiplatelet agents are widely used to reduce these complications.METHODS:This was a multicentre, double-blind, randomised placebo-controlled trial for which patients were recruited at 602 hospitals, clinics, or community practices from 33 countries across six continents. Eligible patients had a history of peripheral artery disease of the lower extremities (previous peripheral bypass surgery or angioplasty, limb or foot amputation, intermittent claudication with objective evidence of peripheral artery disease), of the carotid arteries (previous carotid artery revascularisation or asymptomatic carotid artery stenosis of at least 50%), or coronary artery disease with an ankle-brachial index of less than 0·90. After a 30-day run-in period, patients were randomly assigned (1:1:1) to receive oral rivaroxaban (2·5 mg twice a day) plus aspirin (100 mg once a day), rivaroxaban twice a day (5 mg with aspirin placebo once a day), or to aspirin once a day (100 mg and rivaroxaban placebo twice a day). Randomisation was computer generated. Each treatment group was double dummy, and the patient, investigators, and central study staff were masked to treatment allocation. The primary outcome was cardiovascular death, myocardial infarction or stroke; the primary peripheral artery disease outcome was major adverse limb events including major amputation. This trial is registered with ClinicalTrials.gov, number NCT01776424, and is closed to new participants.FINDINGS:Between March 12, 2013, and May 10, 2016, we enrolled 7470 patients with peripheral artery disease from 558 centres. The combination of rivaroxaban plus aspirin compared with aspirin alone reduced the composite endpoint of cardiovascular death, myocardial infarction, or stroke (126 [5%] of 2492 vs 174 [7%] of 2504; hazard ratio [HR] 0·72, 95% CI 0·57-0·90, p=0·0047), and major adverse limb events including major amputation (32 [1%] vs 60 [2%]; HR 0·54 95% CI 0·35-0·82, p=0·0037). Rivaroxaban 5 mg twice a day compared with aspirin alone did not significantly reduce the composite endpoint (149 [6%] of 2474 vs 174 [7%] of 2504; HR 0·86, 95% CI 0·69-1·08, p=0·19), but reduced major adverse limb events including major amputation (40 [2%] vs 60 [2%]; HR 0·67, 95% CI 0·45-1·00, p=0·05). The median duration of treatment was 21 months. The use of the rivaroxaban plus aspirin combination increased major bleeding compared with the aspirin alone group (77 [3%] of 2492 vs 48 [2%] of 2504; HR 1·61, 95% CI 1·12-2·31, p=0·0089), which was mainly gastrointestinal. Similarly, major bleeding occurred in 79 (3%) of 2474 patients with rivaroxaban 5 mg, and in 48 (2%) of 2504 in the aspirin alone group (HR 1·68, 95% CI 1·17-2·40; p=0·0043).INTERPRETATION:Low-dose rivaroxaban taken twice a day plus aspirin once a day reduced major adverse cardiovascular and limb events when compared with aspirin alone. Although major bleeding was increased, fatal or critical organ bleeding was not. This combination therapy represents an important advance in the management of patients with peripheral artery disease. Rivaroxaban alone did not significantly reduce major adverse cardiovascular events compared with asprin alone, but reduced major adverse limb events and increased major bleeding

    Risk categorization using New American College of Cardiology/American Heart Association guidelines for cholesterol management and its relation to alirocumab treatment following acute coronary syndromes

    No full text
    Background: The 2018 US cholesterol management guidelines recommend additional lipid-lowering therapies for secondary prevention in patients with low-density lipoprotein cholesterol ≥70 mg/dL or non−high-density lipoprotein cholesterol ≥100 mg/dL despite maximum tolerated statin therapy. Such patients are considered at very high risk (VHR) based on a history of >1 major atherosclerotic cardiovascular disease (ASCVD) event or a single ASCVD event and multiple high-risk conditions. We investigated the association of US guideline-defined risk categories with the occurrence of ischemic events after acute coronary syndrome and reduction of those events by alirocumab, a PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitor. Methods: In the ODYSSEY OUTCOMES trial (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab), patients with recent acute coronary syndrome and residual dyslipidemia despite optimal statin therapy were randomly assigned to alirocumab or placebo. The primary trial outcome (major adverse cardiovascular events, ie, coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or hospitalization for unstable angina) was examined according to American College of Cardiology/American Heart Association risk category. Results: Of 18 924 participants followed for a median of 2.8 years, 11 935 (63.1%) were classified as VHR: 4450 (37.3%) had multiple prior ASCVD events and 7485 (62.7%) had 1 major ASCVD event and multiple high-risk conditions. Major adverse cardiovascular events occurred in 14.4% of placebo-treated patients at VHR versus 5.6% of those not at VHR. In the VHR category, major adverse cardiovascular events occurred in 20.4% with multiple prior ASCVD events versus 10.7% with 1 ASCVD event and multiple high-risk conditions. Alirocumab was associated with consistent relative risk reductions in both risk categories (hazard ratio=0.84 for VHR; hazard ratio=0.86 for not VHR; Pinteraction=0.820) and by stratification within the VHR group (hazard ratio=0.86 for multiple prior ASCVD events; hazard ratio=0.82 for 1 major ASCVD event and multiple high-risk conditions; Pinteraction=0.672). The absolute risk reduction for major adverse cardiovascular events with alirocumab was numerically greater (but not statistically different) in the VHR group versus those not at VHR (2.1% versus 0.8%; Pinteraction=0.095) and among patients at VHR with multiple prior ASCVD events versus a single prior ASCVD event (2.4% versus 1.8%; Pinteraction=0.661). Conclusions: The US guideline criteria identify patients with recent acute coronary syndrome and dyslipidemia who are at VHR for recurrent ischemic events and who may derive a larger absolute benefit from treatment with alirocumab. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients

    Get PDF
    Bococizumab is a humanized monoclonal antibody that inhibits proprotein convertase subtilisin- kexin type 9 (PCSK9) and reduces levels of low-density lipoprotein (LDL) cholesterol. We sought to evaluate the efficacy of bococizumab in patients at high cardiovascular risk. METHODS In two parallel, multinational trials with different entry criteria for LDL cholesterol levels, we randomly assigned the 27,438 patients in the combined trials to receive bococizumab (at a dose of 150 mg) subcutaneously every 2 weeks or placebo. The primary end point was nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina requiring urgent revascularization, or cardiovascular death; 93% of the patients were receiving statin therapy at baseline. The trials were stopped early after the sponsor elected to discontinue the development of bococizumab owing in part to the development of high rates of antidrug antibodies, as seen in data from other studies in the program. The median follow-up was 10 months. RESULTS At 14 weeks, patients in the combined trials had a mean change from baseline in LDL cholesterol levels of -56.0% in the bococizumab group and +2.9% in the placebo group, for a between-group difference of -59.0 percentage points (P<0.001) and a median reduction from baseline of 64.2% (P<0.001). In the lower-risk, shorter-duration trial (in which the patients had a baseline LDL cholesterol level of ≥70 mg per deciliter [1.8 mmol per liter] and the median follow-up was 7 months), major cardiovascular events occurred in 173 patients each in the bococizumab group and the placebo group (hazard ratio, 0.99; 95% confidence interval [CI], 0.80 to 1.22; P = 0.94). In the higher-risk, longer-duration trial (in which the patients had a baseline LDL cholesterol level of ≥100 mg per deciliter [2.6 mmol per liter] and the median follow-up was 12 months), major cardiovascular events occurred in 179 and 224 patients, respectively (hazard ratio, 0.79; 95% CI, 0.65 to 0.97; P = 0.02). The hazard ratio for the primary end point in the combined trials was 0.88 (95% CI, 0.76 to 1.02; P = 0.08). Injection-site reactions were more common in the bococizumab group than in the placebo group (10.4% vs. 1.3%, P<0.001). CONCLUSIONS In two randomized trials comparing the PCSK9 inhibitor bococizumab with placebo, bococizumab had no benefit with respect to major adverse cardiovascular events in the trial involving lower-risk patients but did have a significant benefit in the trial involving higher-risk patients

    Rivaroxaban with or without aspirin in stable cardiovascular disease

    No full text
    BACKGROUND: We evaluated whether rivaroxaban alone or in combination with aspirin would be more effective than aspirin alone for secondary cardiovascular prevention. METHODS: In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months. RESULTS: The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=−4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group. CONCLUSIONS: Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events
    corecore