281 research outputs found
Metric adjusted skew information: Convexity and restricted forms of superadditivity
We give a truly elementary proof of the convexity of metric adjusted skew
information following an idea of Effros. We extend earlier results of weak
forms of superadditivity to general metric adjusted skew informations.
Recently, Luo and Zhang introduced the notion of semi-quantum states on a
bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew
informations for such states. We extend this result to general metric adjusted
skew informations. We finally show that a recently introduced extension to
parameter values of the WYD-information is a special case of
(unbounded) metric adjusted skew information.Comment: An error in the literature is pointed ou
Inequalities for quantum skew information
We study quantum information inequalities and show that the basic inequality
between the quantum variance and the metric adjusted skew information generates
all the multi-operator matrix inequalities or Robertson type determinant
inequalities studied by a number of authors. We introduce an order relation on
the set of functions representing quantum Fisher information that renders the
set into a lattice with an involution. This order structure generates new
inequalities for the metric adjusted skew informations. In particular, the
Wigner-Yanase skew information is the maximal skew information with respect to
this order structure in the set of Wigner-Yanase-Dyson skew informations.
Key words and phrases: Quantum covariance, metric adjusted skew information,
Robertson-type uncertainty principle, operator monotone function,
Wigner-Yanase-Dyson skew information
Generating a checking sequence with a minimum number of reset transitions
Given a finite state machine M, a checking sequence is an input sequence that is guaranteed to lead to a failure if the implementation under test is faulty and has no more states than M. There has been much interest in the automated generation of a short checking sequence from a finite state machine. However, such sequences can contain reset transitions whose use can adversely affect both the cost of applying the checking sequence and the effectiveness of the checking sequence. Thus, we sometimes want a checking sequence with a minimum number of reset transitions rather than a shortest checking sequence. This paper describes a new algorithm for generating a checking sequence, based on a distinguishing sequence, that minimises the number of reset transitions used.This work was supported in part by Leverhulme Trust grant number F/00275/D, Testing State Based Systems, Natural Sciences and Engineering Research Council (NSERC) of Canada grant number RGPIN 976, and Engineering and Physical Sciences Research Council grant number GR/R43150, Formal Methods and Testing (FORTEST)
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Atomic X-ray Spectroscopy of Accreting Black Holes
Current astrophysical research suggests that the most persistently luminous
objects in the Universe are powered by the flow of matter through accretion
disks onto black holes. Accretion disk systems are observed to emit copious
radiation across the electromagnetic spectrum, each energy band providing
access to rather distinct regimes of physical conditions and geometric scale.
X-ray emission probes the innermost regions of the accretion disk, where
relativistic effects prevail. While this has been known for decades, it also
has been acknowledged that inferring physical conditions in the relativistic
regime from the behavior of the X-ray continuum is problematic and not
satisfactorily constraining. With the discovery in the 1990s of iron X-ray
lines bearing signatures of relativistic distortion came the hope that such
emission would more firmly constrain models of disk accretion near black holes,
as well as provide observational criteria by which to test general relativity
in the strong field limit. Here we provide an introduction to this phenomenon.
While the presentation is intended to be primarily tutorial in nature, we aim
also to acquaint the reader with trends in current research. To achieve these
ends, we present the basic applications of general relativity that pertain to
X-ray spectroscopic observations of black hole accretion disk systems, focusing
on the Schwarzschild and Kerr solutions to the Einstein field equations. To
this we add treatments of the fundamental concepts associated with the
theoretical and modeling aspects of accretion disks, as well as relevant topics
from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian
Journal of Physics, in pres
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
On Relativistic Quantum Information Properties of Entangled Wave Vectors of Massive Fermions
We study special relativistic effects on the entanglement between either
spins or momenta of composite quantum systems of two spin-1/2 massive
particles, either indistinguishable or distinguishable, in inertial reference
frames in relative motion. For the case of indistinguishable particles, we
consider a balanced scenario where the momenta of the pair are well-defined but
not maximally entangled in the rest frame while the spins of the pair are
described by a one-parameter () family of entangled bipartite states. For
the case of distinguishable particles, we consider an unbalanced scenario where
the momenta of the pair are well-defined and maximally entangled in the rest
frame while the spins of the pair are described by a one-parameter ()
family of non-maximally entangled bipartite states. In both cases, we show that
neither the spin-spin () nor the momentum-momentum () entanglements
quantified by means of Wootters' concurrence are Lorentz invariant quantities:
the total amount of entanglement regarded as the sum of these entanglements is
not the same in different inertial moving frames. In particular, for any value
of the entangling parameters, both and -entanglements are attenuated
by Lorentz transformations and their parametric rates of change with respect to
the entanglements observed in a rest frame have the same monotonic behavior.
However, for indistinguishable (distinguishable) particles, the change in
entanglement for the momenta is (is not) the same as the change in entanglement
for spins. As a consequence, in both cases, no entanglement compensation
between spin and momentum degrees of freedom occurs.Comment: 21 pages, 8 figure
Genetic Influences on the Developing Young Brain and Risk for Neuropsychiatric Disorders
Imaging genetics provides an opportunity to discern associations between genetic variants and brain imaging phenotypes. Historically, the field has focused on adults and adolescents; very few imaging genetics studies have focused on brain development in infancy and early childhood (from birth to age 6 years). This is an important knowledge gap because developmental changes in the brain during the prenatal and early postnatal period are regulated by dynamic gene expression patterns that likely play an important role in establishing an individual's risk for later psychiatric illness and neurodevelopmental disabilities. In this review, we summarize findings from imaging genetics studies spanning from early infancy to early childhood, with a focus on studies examining genetic risk for neuropsychiatric disorders. We also introduce the Organization for Imaging Genomics in Infancy (ORIGINs), a working group of the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium, which was established to facilitate large-scale imaging genetics studies in infancy and early childhood
Beam-energy Dependence Of Charge Balance Functions From Au + Au Collisions At Energies Available At The Bnl Relativistic Heavy Ion Collider
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Balance functions have been measured in terms of relative pseudorapidity (Δη) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at sNN=7.7GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at sNN=2.76TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at sNN=7.7 GeV implies that a QGP is still being created at this relatively low energy. © 2016 American Physical Society.942CNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoMinistry of Education and Science of the Russian FederationMOE, Ministry of Education of the People's Republic of ChinaMOST, Ministry of Science and Technology of the People's Republic of ChinaNRF-2012004024, National Research FoundationNSF, National Stroke FoundationConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Probing the Gluonic Structure of the Deuteron with J/ψ Photoproduction in d+Au Ultraperipheral Collisions
- …
