We give a truly elementary proof of the convexity of metric adjusted skew
information following an idea of Effros. We extend earlier results of weak
forms of superadditivity to general metric adjusted skew informations.
Recently, Luo and Zhang introduced the notion of semi-quantum states on a
bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew
informations for such states. We extend this result to general metric adjusted
skew informations. We finally show that a recently introduced extension to
parameter values 1<p≤2 of the WYD-information is a special case of
(unbounded) metric adjusted skew information.Comment: An error in the literature is pointed ou