31 research outputs found

    Conserved functional domains and a novel tertiary interaction near the pseudoknot drive translational activity of hepatitis C virus and hepatitis C virus-like internal ribosome entry sites

    Get PDF
    The translational activity of the hepatitis C virus (HCV) internal ribosome entry site (IRES) and other HCV-like IRES RNAs depends on structured RNA elements in domains II and III, which serve to recruit the ribosomal 40S subunit, eukaryotic initiation factor (eIF) 3 and the ternary eIF2/Met-tRNAiMet/GTP complex and subsequently domain II assists subunit joining. Porcine teschovirus-1 talfan (PTV-1) is a member of the Picornaviridae family, with a predicted HCV-like secondary structure, but only stem-loops IIId and IIIe in the 40S-binding domain display significant sequence conservation with the HCV IRES. Here, we use chemical probing to show that interaction sites with the 40S subunit and eIF3 are conserved between HCV and HCV-like IRESs. In addition, we reveal the functional role of a strictly conserved co-variation between a purine–purine mismatch near the pseudoknot (A–A/G) and the loop sequence of domain IIIe (GAU/CA). These nucleotides are involved in a tertiary interaction, which serves to stabilize the pseudoknot structure and correlates with translational efficiency in both the PTV-1 and HCV IRES. Our data demonstrate conservation of functional domains in HCV and HCV-like IRESs including a more complex structure surrounding the pseudoknot than previously assumed

    Strategy for automated NMR resonance assignment of RNA: application to 48-nucleotide K10

    Get PDF
    A procedure is presented for automated sequence-specific assignment of NMR resonances of uniformly [13C, 15N]-labeled RNA. The method is based on a suite of four through-bond and two through-space high-dimensional automated projection spectroscopy (APSY) experiments. The approach is exemplified with a 0.3mM sample of an RNA stem-loop with 48 nucleotides, K10, which is responsible for dynein-mediated localization of Drosophila fs(1)K10 mRNA transcripts. The automated analysis of the APSY data led to highly accurate and precise 3- to 4-dimensional peak lists. They provided a reliable basis for the subsequent sequence-specific resonance assignment with the algorithm FLYA and resulted in the fully automated resonance assignment of more than 80% of the resonances of the 13C-1H moieties at the 1′, 2′, 5, 6, and 8 positions in the nucleotides. The procedure was robust with respect to numerous impurity peaks, low concentration of this for NMR comparably large RNA, and structural features such as a loop, single-nucleotide bulges and a non-Watson-Crick wobble base pairs. Currently, there is no precise chemical shift statistics (as used by FLYA) for RNA regions which deviate from the regular A-form helical structure. Reliable and precise peak lists are thus required for automated sequence-specific assignment, as provided by APSY

    Physicochemical analysis of rotavirus segment 11 supports a 'modified panhandle' structure and not the predicted alternative tRNA-like structure (TRLS)

    Get PDF
    .Rotaviruses are a major cause of acute gastroenteritis, which is often fatal in infants. The viral genome consists of 11 double-stranded RNA segments, but little is known about their cis-acting sequences and structural elements. Covariation studies and phylogenetic analysis exploring the potential structure of RNA11 of rotaviruses suggested that, besides the previously predicted "modified panhandle" structure, the 5' and 3' termini of one of the isoforms of the bovine rotavirus UKtc strain may interact to form a tRNA-like structure (TRLS). Such TRLSs have been identified in RNAs of plant viruses, where they are important for enhancing replication and packaging. However, using tRNA mimicry assays (in vitro aminoacylation and 3'- adenylation), we found no biochemical evidence for tRNA-like functions of RNA11. Capping, synthetic 3' adenylation and manipulation of divalent cation concentrations did not change this finding. NMR studies on a 5'- and 3'-deletion construct of RNA11 containing the putative intra-strand complementary sequences supported a predominant panhandle structure and did not conform to a cloverleaf fold despite the strong evidence for a predicted structure in this conserved region of the viral RNA. Additional viral or cellular factors may be needed to stabilise it into a form with tRNA-like properties

    A multidimensional platform for the purification of non-coding RNA species

    Get PDF
    A renewed interest in non-coding RNA (ncRNA) has led to the discovery of novel RNA species and post-transcriptional ribonucleoside modifications, and an emerging appreciation for the role of ncRNA in RNA epigenetics. Although much can be learned by amplification-based analysis of ncRNA sequence and quantity, there is a significant need for direct analysis of RNA, which has led to numerous methods for purification of specific ncRNA molecules. However, no single method allows purification of the full range of cellular ncRNA species. To this end, we developed a multidimensional chromatographic platform to resolve, isolate and quantify all canonical ncRNAs in a single sample of cells or tissue, as well as novel ncRNA species. The applicability of the platform is demonstrated in analyses of ncRNA from bacteria, human cells and plasmodium-infected reticulocytes, as well as a viral RNA genome. Among the many potential applications of this platform are a system-level analysis of the dozens of modified ribonucleosides in ncRNA, characterization of novel long ncRNA species, enhanced detection of rare transcript variants and analysis of viral genomes.Singapore-MIT Alliance for Research and TechnologyNational Institute of Environmental Health Sciences (ES017010)National Institute of Environmental Health Sciences (ES002109

    Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly

    Get PDF
    Translation initiation factor eIF3 acts as the key orchestrator of the canonical initiation pathway in eukaryotes, yet its structure is greatly unexplored. We report the 2.2 Å resolution crystal structure of the complex between the yeast seven-bladed β-propeller eIF3i/TIF34 and a C-terminal α-helix of eIF3b/PRT1, which reveals universally conserved interactions. Mutating these interactions displays severe growth defects and eliminates association of eIF3i/TIF34 and strikingly also eIF3g/TIF35 with eIF3 and 40S subunits in vivo. Unexpectedly, 40S-association of the remaining eIF3 subcomplex and eIF5 is likewise destabilized resulting in formation of aberrant pre-initiation complexes (PICs) containing eIF2 and eIF1, which critically compromises scanning arrest on mRNA at its AUG start codon suggesting that the contacts between mRNA and ribosomal decoding site are impaired. Remarkably, overexpression of eIF3g/TIF35 suppresses the leaky scanning and growth defects most probably by preventing these aberrant PICs to form. Leaky scanning is also partially suppressed by eIF1, one of the key regulators of AUG recognition, and its mutant sui1G107R but the mechanism differs. We conclude that the C-terminus of eIF3b/PRT1 orchestrates co-operative recruitment of eIF3i/TIF34 and eIF3g/TIF35 to the 40S subunit for a stable and proper assembly of 48S pre-initiation complexes necessary for stringent AUG recognition on mRNAs

    Strategy for automated NMR resonance assignment of RNA: application to 48-nucleotide K10

    No full text
    A procedure is presented for automated sequence-specific assignment of NMR resonances of uniformly [13C, 15N]-labeled RNA. The method is based on a suite of four through-bond and two through-space high-dimensional automated projection spectroscopy (APSY) experiments. The approach is exemplified with a 0.3 mM sample of an RNA stem-loop with 48 nucleotides, K10, which is responsible for dynein-mediated localization of Drosophila fs(1)K10 mRNA transcripts. The automated analysis of the APSY data led to highly accurate and precise 3- to 4-dimensional peak lists. They provided a reliable basis for the subsequent sequence-specific resonance assignment with the algorithm FLYA and resulted in the fully automated resonance assignment of more than 80 % of the resonances of the 13C–1H moieties at the 1′, 2′, 5, 6, and 8 positions in the nucleotides. The procedure was robust with respect to numerous impurity peaks, low concentration of this for NMR comparably large RNA, and structural features such as a loop, single-nucleotide bulges and a non-Watson–Crick wobble base pairs. Currently, there is no precise chemical shift statistics (as used by FLYA) for RNA regions which deviate from the regular A-form helical structure. Reliable and precise peak lists are thus required for automated sequence-specific assignment, as provided by APSY.ISSN:0925-2738ISSN:1573-500

    Large-scale preparation and purification of polyacrylamide-free RNA oligonucleotides

    No full text
    We present a fast and simple protocol for large-scale preparation and purification of RNA oligonucleotides. RNA oligonucleotides are prepared by in vitro transcription with T7 RNA polymerase from linearized plasmid DNA templates constructed by PCR. In place of denaturing polyacrylamide gel electrophoresis (PAGE), size-exclusion chromatography is employed to purify the RNA oligonucleotide from the transcription mixture yielding >99% pure RNA product. In contrast to PAGE-based purification, the gel filtration method does not require denaturation of the RNA oligonucleotide, which is desirable for larger RNAs, and the product is free of low-molecular-weight acrylamide contaminants, which greatly benefits NMR, crystallographic, and other biophysical studies of large RNAs and RNA–protein complexes

    Affinity purification of eukaryotic 48S initiation complexes

    No full text
    In vitro assembly of translation initiation complexes from higher eukaryotes requires purification of ribosomal subunits, eukaryotic initiation factors, and initiator tRNA from natural sources, and therefore yields only limited material for functional and structural studies. Here we describe a robust, affinity chromatography-based purification of eukaryotic 48S initiation complexes from rabbit reticulocyte lysate (RRL), which significantly reduces the number of individual purification steps. Hybrid RNA molecules, consisting of either a canonical 5′ UTR or an internal ribosome entry site (IRES) RNA followed by a short open reading frame and a streptomycin aptamer sequence, are incubated in RRL to form 48S complexes. The assembly reaction is then applied to a dihydrostreptomycin-sepharose column; bound complexes are washed and specifically eluted upon addition of streptomycin. The eluted fractions are further purified by centrifugation through a sucrose density gradient to yield pure 48S particles. Using this purification scheme, properly assembled IRES-mediated as well as canonical 48S complexes were purified in milligram quantities

    Structure of eIF3b RNA Recognition Motif and Its Interaction with eIF3j

    No full text
    International audienceMammalian eIF3 is a 700-kDa multiprotein complex essential for initiation of protein synthesis in eukaryotic cells. It consists of 13 subunits (eIF3a to-m), among which eIF3b serves as a major scaffolding protein. Here we report the solution structure of the N-terminal RNA recognition motif of human eIF3b (eIF3b-RRM) determined by NMR spectroscopy. The structure reveals a noncanonical RRM with a negatively charged surface in the-sheet area contradictory with potential RNA binding activity. Instead, eIF3j, which is required for stable 40 S ribo-some binding of the eIF3 complex, specifically binds to the rear-helices of the eIF3b-RRM, opposite to its-sheet surface. Moreover, we identify that an N-terminal 69-amino acid peptide of eIF3j is sufficient for binding to eIF3b-RRM and that this interaction is essential for eIF3b-RRM recruitment to the 40 S riboso-mal subunit. Our results provide the first structure of an important subdomain of a core eIF3 subunit and detailed insights into protein protein interactions between two eIF3 subunits required for stable eIF3 recruitment to the 40 S subunit

    NMR Study of 100 kDa HCV IRES RNA Using Segmental Isotope Labeling

    No full text
    corecore