8 research outputs found

    Soil networks become more connected and take up more carbon as nature restoration progresses

    Get PDF
    Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered

    Crustal types and Tertiary tectonic evolution of the Alborán sea, western Mediterranean

    Get PDF
    Multichannel seismic reflection images across the transition between the east Alborán and the Algero-Balearic basins show how crustal thickness decreases from about 5 s two-way traveltime (TWTT, ∼15 km thick) in the west (east Alborán basin) to ∼2 s TWTT typical of oceanic crust (∼6 km thick) in the east (Algero-Balearic basin). We have differentiated three different crustal domains in this transition, mainly on the basis of crustal thickness and seismic signature. Boundaries between the three crustal domains are transitional and lack evidence for major faults. Tilted blocks related to extension are very scarce and all sampled basement outcrops are volcanic, suggesting a strong relationship between magmatism and crustal structure. Stratigraphic correlation of lithoseismic units with sedimentary units of southeastern Betic basins indicates that sediments onlap igneous basement approximately at 12 Ma in the eastern area and at 8 Ma in the western area. Linking seismic crustal structure with magmatic geochemical evidence suggests that the three differentiated crustal domains may represent, from west to east, thin continental crust modified by arc magmatism, magmatic-arc crust, and oceanic crust. Middle to late Miocene arc and oceanic crust formation in the east Alborán and Algero-Balearic basins, respectively, occurred during westward migration of the Gibraltar accretionary wedge and shortening in the Betic-Rif foreland basins. Arc magmatism and associated backarc oceanic crust formation were related to early to middle Miocene subduction and rollback of the Flysch Trough oceanic basement. Subduction of this narrow slab beneath the Alborán basin was coeval with collision of the Alborán domain with the Iberian and African passive margins and subsequent subcontinental-lithosphere edge delamination along the Betic-Rif margins

    Organic fertilization influences nematode diversity and maturity index in coffee tree plantations using an agroforestry system

    No full text
    In conventional coffee farming, soil fauna can be negatively affected by the intensive management practices adopted and the use of an agroforestry system (AFS) is an alternative to reduce these impacts. In coffee AFS, soil nutrition is provided mainly using organic fertilizers. This soil management favors the microbiota and can alter the population dynamics of some organisms. Our objective was to evaluate the effect of organic fertilizers on the nematode community in coffee AFS and to determine their impact on soil ecology. Soil samples were collected from three coffee AFS and a nearby Atlantic rainforest fragment. Nematodes were extracted from the samples and identified to the genus. The identified populations were compared using several community and diversity indices to determine the environmental conditions of the systems under evaluation. No differences in total abundance among nematode communities were found in the four areas evaluated. Regarding trophic groups, the coffee AFS treated with either cow manure or poultry litter favored the trophic group of bacterivores. Plant-parasitic nematodes were more abundant in soils of both the naturally fertilized coffee AFS and the Atlantic rainforest fragment. The maturity and structural indexes indicated that the Atlantic rainforest fragment and the naturally fertilized coffee AFS had similar ecological functions. On the other hand, soils fertilized with cow manure were less diverse, had higher dominance in the community, and showed less ecological stability. The nematode communities found in the AFS were similar to those seen in the forest fragment indicating that is possible to produce coffee sustainably without negatively affecting soil quality.Peer reviewe

    State of the World's Plants and Fungi, 2023.

    No full text

    Compressional tectonic inversion of the Algero-Balearic basin: Latemost Miocene to present oblique convergence at the Palomares margin (Western Mediterranean)

    No full text
    corecore