11 research outputs found

    Precipitation comparison for the CFSR, MERRA, TRMM3B42 and Combined Scheme datasets in Bolivia

    Get PDF
    AbstractAn overwhelming number of applications depend on reliable precipitation estimations. However, over complex terrain in regions such as the Andes or the southwestern Amazon, the spatial coverage of rain gauges is scarce. Two reanalysis datasets, a satellite algorithm and a scheme that combines surface observations with satellite estimations were selected for studying rainfall in the following areas of Bolivia: the central Andes, Altiplano, southwestern Amazonia, and Chaco. These Bolivian regions can be divided into three main basins: the Altiplano, La Plata, and Amazon. The selected reanalyses were the Modern-Era Retrospective Analysis for Research and Applications, which has a horizontal resolution (~50km) conducive for studying rainfall in relatively small precipitation systems, and the Climate Forecast System Reanalysis and Reforecast, which features an improved horizontal resolution (~38km). The third dataset was the seventh version of the Tropical Rainfall Measurement Mission 3B42 algorithm, which is conducive for studying rainfall at an ~25km horizontal resolution. The fourth dataset utilizes a new technique known as the Combined Scheme, which successfully removes satellite bias. All four of these datasets were aggregated to a coarser resolution. Additionally, the daily totals were calculated to match the cumulative daily values of the ground observations. This research aimed to describe and compare precipitations in the two reanalysis datasets, the satellite-algorithm dataset, and the Combined Scheme with ground observations. Two seasons were selected for studying the precipitation estimates: the rainy season (December–February) and the dry season (June–August). The average, bias, standard deviation, correlation coefficient, and root mean square error were calculated. Moreover, a contingency table was generated to calculate the accuracy, bias frequency, probability of detection, false alarm ratio, and equitable threat score.All four datasets correctly depicted the spatial rainfall pattern. However, CFSR and MERRA overestimated precipitation along the Andes' eastern-facing slopes and exhibited a dry bias over the eastern Amazon; TRMM3B42 and the Combined Scheme depicted a more realistic rainfall distribution over both the Amazon and the Andes. When separating the precipitation into classes, MERRA and CFSR overestimated light to moderate precipitation (1–20mm/day) and underestimated very heavy precipitation (>50mm/day). TRMM3B42 and CoSch depicted behaviors similar to the surface observations; however, CoSch underestimated the precipitation in very intense systems (>50mm/day).The statistical variables indicated that CoSch's correlation coefficient was highest for every season and basin. Additionally, the bias and RMSE values suggested that CoSch closely represented the surface observations

    Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia

    Get PDF
    High-quality atmospheric mercury (Hg) data are rare for South America, especially for its tropical region. As a consequence, mercury dynamics are still highly uncertain in this region. This is a significant deficiency, as South America appears to play a major role in the global budget of this toxic pollutant. To address this issue, we performed nearly 2 years (July 2014-February 2016) of continuous high-resolution total gaseous mercury (TGM) measurements at the Chacaltaya (CHC) mountain site in the Bolivian Andes, which is subject to a diverse mix of air masses coming predominantly from the Altiplano and the Amazon rainforest. For the first 11 months of measurements, we obtained a mean TGM concentration of 0 :89 +/- 0 :01 ngm(-3), which is in good agreement with the sparse amount of data available from the continent. For the remaining 9 months, we obtained a significantly higher TGM concentration of 1 :34 +/- 0 :01 ngm(-3), a difference which we tentatively attribute to the strong El Nino event of 2015-2016. Based on HYSPLIT (Hybrid SingleParticle Lagrangian Integrated Trajectory) back trajectories and clustering techniques, we show that lower mean TGM concentrations were linked to either westerly Altiplanic air masses or those originating from the lowlands to the southeast of CHC. Elevated TGM concentrations were related to northerly air masses of Amazonian or southerly air masses of Altiplanic origin, with the former possibly linked to artisanal and small-scale gold mining (ASGM), whereas the latter might be explained by volcanic activity. We observed a marked seasonal pattern, with low TGM concentrations in the dry season (austral winter), rising concentrations during the biomass burning (BB) season, and the highest concentrations at the beginning of the wet season (austral summer). With the help of simultaneously sampled equivalent black carbon (eBC) and carbon monoxide (CO) data, we use the clearly BB-influenced signal during the BB season (August to October) to derive a mean TGM = CO emission ratio of (2.3 +/- 0.6 x 10(-7) ppbvTGM ppbv (-1)(CO), which could be used to constrain South American BB emissions. Through the link with CO2 measured in situ and remotely sensed solarinduced fluorescence (SIF) as proxies for vegetation activity, we detect signs of a vegetation sink effect in Amazonian airPeer reviewe

    Diurnal Circulation of the Bolivan Altiplano. Part I: Observations

    Get PDF
    In July and August 2003 a field campaign was conducted to explore the diurnal circulation of the Bolivian Altiplano. Vertical soundings by remote-controlled aircraft yielded profiles of temperature, pressure, and humidity at six passes and in a valley. Pilot balloon observations provided wind profiles. Two permanent stations collected additional data. Typically, inflow toward the Altiplano commences a few hours after sunrise at about the time when the stable nocturnal layer near the ground is transformed by the solar heating into an almost neutrally stratified convective boundary layer. The depth of the inflow layer is comparable to but normally less than that of this boundary layer. There are indications of return flow aloft. The inflow continues at least until sunset. Moisture is imported at the passes leading to the Yungas in the east. Strong upvalley flows were found in the valley of the Rio de La Paz, which connects the wide canyon of La Paz with the tropical lowlands to the east. Inflow was absent at one of the passes despite favorable synoptic conditions. Cases of synoptically forced flows are presented as well where the diurnal signal is difficult to separate. A simple flow scheme is presented that fits the observations reasonably well

    Satiating Effect of High Protein Diets on Resistance-Trained Subjects in Energy Deficit.

    Get PDF
    Short-term energy deficit strategies are practiced by weight class and physique athletes, often involving high protein intakes to maximize satiety and maintain lean mass despite a paucity of research. This study compared the satiating effect of two protein diets on resistance-trained individuals during short-term energy deficit. Following ethical approval, 16 participants (age: 28 ± 2 years; height: 1.72 ± 0.03 m; body-mass: 88.83 ± 5.54 kg; body-fat: 21.85 ± 1.82%) were randomly assigned to 7-days moderate (PROMOD: 1.8 g·kg-1·d-1) or high protein (PROHIGH: 2.9 g·kg-1·d-1) matched calorie-deficit diets in a cross-over design. Daily satiety responses were recorded throughout interventions. Pre-post diet, plasma ghrelin and peptide tyrosine tyrosine (PYY), and satiety ratings were assessed in response to a protein-rich meal. Only perceived satisfaction was significantly greater following PROHIGH (67.29 ± 4.28 v 58.96 ± 4.51 mm, p = 0.04). Perceived cravings increased following PROMOD only (46.25 ± 4.96 to 57.60 ± 4.41 mm, p = 0.01). Absolute ghrelin concentration significantly reduced post-meal following PROMOD (972.8 ± 130.4 to 613.6 ± 114.3 pg·mL-1; p = 0.003), remaining lower than PROHIGH at 2 h (-0.40 ± 0.06 v -0.26 ± 0.06 pg·mL-1 normalized relative change; p = 0.015). Absolute PYY concentration increased to a similar extent post-meal (PROMOD: 84.9 ± 8.9 to 147.1 ± 11.9 pg·mL-1, PROHIGH: 100.6 ± 9.5 to 143.3 ± 12.0 pg·mL-1; p 0.05). However, desire to eat remained significantly blunted for PROMOD (p = 0.048). PROHIGH does not confer additional satiating benefits in resistance-trained individuals during short-term energy deficit. Ghrelin and PYY responses to a test-meal support the contention that satiety was maintained following PROMOD, although athletes experiencing negative symptoms (i.e., cravings) may benefit from protein-rich meals as opposed to over-consumption of protein

    Deforestation impacts on Amazon-Andes hydroclimatic connectivity

    No full text
    International audienceAmazonian deforestation has accelerated during the last decade, threatening an ecosystem where almost one third of the regional rainfall is transpired by the local rainforest. Due to precipitation recycling, the southwestern Amazon, including the Amazon-Andes transition region, is particularly sensitive to forest loss. This study evaluates the impacts of Amazonian deforestation on the hydro-climatic connectivity between the Amazon and the eastern tropical Andes during the austral summer (December-January-February) in terms of hydrological and energetic balances. Using 10-years high-resolution simulations (2001-2011) with the Weather Research and Forecasting Model, we analyze control and deforestation scenario simulations. Regionally, deforestation leads to a reduction in the surface net radiation, evaporation, moisture convergence and precipitation (~ 20%) over the entire Amazon basin. In addition, during this season, deforestation increases the atmospheric subsidence over the southern Amazon and weakens the regional Hadley cell. Atmospheric stability increases over the western Amazon and the tropical Andes inhibiting convection in these areas. Consequently, major deforestation impacts are observed over the hydro-climate of the Amazon-Andes transition region. At local scale, nighttime precipitation decreases in Bolivian valleys (~ 20-30%) due to a strong reduction in the humidity transport from the Amazon plains towards the Andes linked to the South American low-level jet. Over these valleys, a weakening of the daytime upslope winds is caused by local deforestation, which reduces the turbulent fluxes at lowlands. These alterations in rainfall and atmospheric circulation could impact the rich Andean ecosystems and its tropical glaciers

    Evidence for Interhemispheric Mercury Exchange in the Pacific Ocean Upper Troposphere

    No full text
    International audienceEven though anthropogenic mercury (Hg) emissions to the atmosphere are ∌2.5 times higher in the Northern Hemisphere (NH) than in the Southern Hemisphere (SH), atmospheric Hg concentrations in the NH are only ∌1.5 times higher than in the SH. Global Hg models attribute this apparent discrepancy to large SH oceanic Hg emissions or to interhemispheric exchange of Hg through the atmosphere. However, no observational data set exists to serve as a benchmark to validate whether these coarse-resolution models adequately represent the complex dynamics of interhemispheric Hg exchange. During the 2015-2016 El Niño, we observed at mount Chacaltaya in the tropical Andes a ∌50% increase in ambient Hg compared to the year before, coinciding with a shift in synoptic transport pathways. Using this event as a case study, we investigate the impact of interhemispheric exchange on atmospheric Hg in tropical South America. We use HYSPLIT to link Hg observations to long-range transport and find that the observed Hg increase relates strongly to air masses from the tropical Pacific upper troposphere (UT), a region directly impacted by interhemispheric exchange. Inclusion of the modeled seasonality of interhemispheric air mass exchange strengthens this relationship significantly. We estimate that interhemispheric exchange drives Hg seasonality in the SH tropical Pacific UT, with strongly enhanced Hg between July and October. We validate this seasonality with previously published aircraft Hg observations. Our results suggest that the transport of NH-influenced air masses to tropical South America via the Pacific UT occurs regularly but became more detectable at Chacaltaya in 2015-2016 because of a westward shift in air mass origin

    Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes

    No full text
    The chemical composition of PM10 and non-overlapping PM2.5 was studied at the summit of Mt. Chacaltaya (5380 m a.s.l., lat. −16.346950°, long. −68.128250°) providing a unique long-term record spanning from December 2011 to March 2020. The chemical composition of aerosol at the Chacaltaya Global Atmosphere Watch (GAW) site is representative of the regional background, seasonally affected by biomass burning practices and by nearby anthropogenic emissions from the metropolitan area of La Paz–El Alto. Concentration levels are clearly influenced by seasons with minima occurring during the wet season (December to March) and maxima occurring during the dry and transition seasons (April to November). Ions, total carbon (EC + OC), and saccharide interquartile ranges for concentrations are 558–1785, 384–1120, and 4.3–25.5 ng m−3 for bulk PM10 and 917–2308, 519–1175, and 3.9–24.1 ng m−3 for PM2.5, respectively, with most of the aerosol seemingly present in the PM2.5 fraction. Such concentrations are overall lower compared to other high-altitude stations around the globe but higher than Amazonian remote sites (except for OC). For PM10, there is dominance of insoluble mineral matter (33 %–56 % of the mass), organic matter (7 %–34 %), and secondary inorganic aerosol (15 %–26 %). Chemical composition profiles were identified for different origins: EC, NO−3 , NH+4 , glucose, and C2O24− for the nearby urban and rural areas; OC, EC, NO−3 , K+, acetate, formate, levoglucosan, and some F− and Br− for biomass burning; MeSO−3 , Na+, Mg2+, K+, and Ca2+ for aged marine emissions from the Pacific Ocean; arabitol, mannitol, and glucose for biogenic emissions; Na+, Ca2+, Mg2+, and K+ for soil dust; and SO24−, F−, and some Cl− for volcanism. Regional biomass burning practices influence the soluble fraction of the aerosol between June and November. The organic fraction is present all year round and has both anthropogenic (biomass burning and other combustion sources) and natural (primary and secondary biogenic emissions) origins, with the OC/EC mass ratio being practically constant all year round (10.5 ± 5.7, IQR 8.1–13.3). Peruvian volcanism has dominated the SO24− concentration since 2014, though it presents strong temporal variability due to the intermittence of the sources and seasonal changes in the transport patterns. These measurements represent some of the first long-term observations of aerosol chemical composition at a continental high-altitude site in the tropical Southern Hemisphere.ISSN:1680-7375ISSN:1680-736
    corecore