9 research outputs found

    The Vulvar Immunohistochemical Panel (VIP) Project:Molecular Profiles of Vulvar Squamous Cell Carcinoma

    Get PDF
    Introduction: The study's aim was to investigate the immunohistochemical (IHC) expression of biological markers as potential prognostic/therapeutic factors in vulvar squamous cell carcinoma (VSCC). Methodology: A series of 101 patients surgically treated at our center from 2016 to 2020 were retrospectively enrolled: 53 node-negative (Group A) and 48 node-positive (Group B). A total of 146 samples, 101 from primary tumor (T) and 45 from nodal metastases (N), were investigated. The IHC panel included: p16, p53, MLH1, MSH2, MSH6, PMS2, PD-L1, CD3, HER2/neu, ER, PR, EGFR, VEGF, and CD31. The reactions were evaluated on qualitative and semi-quantitative scales. Generalized Linear Model (GLM) and cluster analysis were performed in R statistical environment. A distance plot compared the IHC panel of T with the correspondent N. Results: In Group A: p16-positive expression (surrogate of HPV-dependent pathway) was significantly higher (20.8% vs. 6.2%, p = 0.04). In Group B: PD-L1 positivity and high EGFR expression were found, respectively, in 77.1% and 97.9% patients (T and/or N). Overall, p16-negative tumors showed a higher PD-L1 expression (60.9% vs. 50.0%). In both groups: tumoral immune infiltration (CD3 expression) was mainly moderate/intense (80% vs. 95%); VEGF showed strong/moderate-diffuse expression in 13.9% of T samples; CD31, related to tumoral microvessel density (MVD), showed no difference between groups; a mutated p53 and over-expressed PD-L1 showed significant association with nodal metastasis, with Odds Ratios (OR) of 4.26 (CI 95% = 1.14-15.87, p = 0.03) and 2.68 (CI 95% = 1.0-7.19, p < 0.05), respectively; since all mismatch repair proteins (MMR) showed a retained expression and ER, PR, and HER2/neu were negative, they were excluded from further analysis. The cluster analysis identified three and four sub-groups of molecular profiles, respectively, in Group A and B, with no difference in prognosis. The molecular signature of each N and corresponding T diverged significantly in 18/41 (43.9%) cases. Conclusions: Our results support a potential role of immune checkpoint inhibitors and anti-VEGF and anti-EGFR drugs especially in patients with worse prognosis (metastatic, HPV-independent). A panel including EGFR, VEGF, PDL1, p16, and p53 might be performed routinely in primary tumor and repeated in case of lymph node metastases to identify changes in marker expressio

    Bioinformatics: From NGS Data to Biological Complexity in Variant Detection and Oncological Clinical Practice

    No full text
    The use of next-generation sequencing (NGS) techniques for variant detection has become increasingly important in clinical research and in clinical practice in oncology. Many cancer patients are currently being treated in clinical practice or in clinical trials with drugs directed against specific genomic alterations. In this scenario, the development of reliable and reproducible bioinformatics tools is essential to derive information on the molecular characteristics of each patient&rsquo;s tumor from the NGS data. The development of bioinformatics pipelines based on the use of machine learning and statistical methods is even more relevant for the determination of complex biomarkers. In this review, we describe some important technologies, computational algorithms and models that can be applied to NGS data from Whole Genome to Targeted Sequencing, to address the problem of finding complex cancer-associated biomarkers. In addition, we explore the future perspectives and challenges faced by bioinformatics for precision medicine both at a molecular and clinical level, with a focus on an emerging complex biomarker such as homologous recombination deficiency (HRD)

    Evaluating the Risk of Inguinal Lymph Node Metastases before Surgery Using the Morphonode Predictive Model: A Prospective Diagnostic Study in Vulvar Cancer Patients

    No full text
    Ultrasound examination is an accurate method in the preoperative evaluation of the inguinofemoral lymph nodes when performed by experienced operators. The purpose of the study was to build a robust, multi-modular model based on machine learning to discriminate between metastatic and non-metastatic inguinal lymph nodes in patients with vulvar cancer. One hundred and twenty-seven women were selected at our center from March 2017 to April 2020, and 237 inguinal regions were analyzed (75 were metastatic and 162 were non-metastatic at histology). Ultrasound was performed before surgery by experienced examiners. Ultrasound features were defined according to previous studies and collected prospectively. Fourteen informative features were used to train and test the machine to obtain a diagnostic model (Morphonode Predictive Model). The following data classifiers were integrated: (I) random forest classifiers (RCF), (II) regression binomial model (RBM), (III) decisional tree (DT), and (IV) similarity profiling (SP). RFC predicted metastatic/non-metastatic lymph nodes with an accuracy of 93.3% and a negative predictive value of 97.1%. DT identified four specific signatures correlated with the risk of metastases and the point risk of each signature was 100%, 81%, 16% and 4%, respectively. The Morphonode Predictive Model could be easily integrated into the clinical routine for preoperative stratification of vulvar cancer patients

    MYC up-regulation confers vulnerability to dual inhibition of CDK12 and CDK13 in high-risk Group 3 medulloblastoma

    No full text
    Background: Medulloblastoma (MB) is the most common cerebellar malignancy during childhood. Among MB, MYC-amplified Group 3 tumors display the worst prognosis. MYC is an oncogenic transcription factor currently thought to be undruggable. Nevertheless, targeting MYC-dependent processes (i.e. transcription and RNA processing regulation) represents a promising approach. Methods: We have tested the sensitivity of MYC-driven Group 3&nbsp;MB cells to a pool of transcription and splicing inhibitors that display a wide spectrum of targets. Among them, we focus on THZ531, an inhibitor of the transcriptional cyclin-dependent kinases (CDK) 12 and 13. High-throughput RNA-sequencing analyses followed by bioinformatics and functional analyses were carried out to elucidate the molecular mechanism(s) underlying the susceptibility of Group 3&nbsp;MB to CDK12/13 chemical inhibition. Data from International Cancer Genome Consortium (ICGC) and other public databases were mined to evaluate the functional relevance of the cellular pathway/s affected by the treatment with THZ531 in Group 3&nbsp;MB patients. Results: We found that pharmacological inhibition of CDK12/13 is highly selective for MYC-high Group 3&nbsp;MB cells with respect to MYC-low MB cells. We identified a subset of genes enriched in functional terms related to the DNA damage response (DDR) that are up-regulated in Group 3&nbsp;MB and repressed by CDK12/13 inhibition. Accordingly, MYC- and CDK12/13-dependent higher expression of DDR genes in Group 3&nbsp;MB cells limits the toxic effects of endogenous DNA lesions in these cells. More importantly, chemical inhibition of CDK12/13 impaired the DDR and induced irreparable DNA damage exclusively in MYC-high Group 3&nbsp;MB cells. The augmented sensitivity of MYC-high MB cells to CDK12/13 inhibition relies on the higher elongation rate of the RNA polymerase II in DDR genes. Lastly, combined treatments with THZ531 and DNA damage-inducing agents synergically suppressed viability of MYC-high Group 3&nbsp;MB cells. Conclusions: Our study demonstrates that CDK12/13 activity represents an exploitable vulnerability in MYC-high Group 3&nbsp;MB and may pave the ground for new therapeutic approaches for this high-risk brain tumor

    Integrating a Comprehensive Cancer Genome Profiling into Clinical Practice: A Blueprint in an Italian Referral Center

    No full text
    The implementation of cancer molecular characterization in clinical practice has improved prognostic re-definition, extending the eligibility to a continuously increasing number of targeted treatments. Broad molecular profiling technologies better than organ-based approaches are believed to serve such dynamic purposes. We here present the workflow our institution adopted to run a comprehensive cancer genome profiling in clinical practice. This article describes the workflow designed to make a comprehensive cancer genome profiling program feasible and sustainable in a large-volume referral hospital

    A Computational Framework for Comprehensive Genomic Profiling in Solid Cancers: The Analytical Performance of a High-Throughput Assay for Small and Copy Number Variants

    No full text
    In January 2022, our institution launched a comprehensive cancer genome profiling program on 10 cancer types using a non-IVD solution named the TruSight Oncology 500 Assay provided by Illumina&reg;. The assay analyzes both DNA and RNA, identifying Single-Nucleotide Variants (SNV)s and Insertion&ndash;Deletion (InDel) in 523 genes, as well as known and unknown fusions and splicing variants in 55 genes and Copy Number Alterations (CNVs), Mutational Tumor Burden (MTB) and Microsatellite Instability (MSI). According to the current European IVD Directive 98/79/EC, an internal validation was performed before running the test. A dedicated open-source bioinformatics pipeline was developed for data postprocessing, panel assessment and embedding in high-performance computing framework using the container technology to ensure scalability and reproducibility. Our protocols, applied to 71 DNA and 64 RNA samples, showed full agreement between the TruSight Oncology 500 assay and standard approaches, with only minor limitations, allowing to routinely perform our protocol in patient screening

    Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cerevisiae

    No full text
    The Saccharomyces cerevisiae kinase/adenosine triphosphatase Rio1 regulates rDNA transcription and segregation, pre-rRNA processing and small ribosomal subunit maturation. Other roles are unknown. When overexpressed, human ortholog RIOK1 drives tumor growth and metastasis. Likewise, RIOK1 promotes 40S ribosomal subunit biogenesis and has not been characterized globally. We show that Rio1 manages directly and via a series of regulators, an essential signaling network at the protein, chromatin and RNA levels. Rio1 orchestrates growth and division depending on resource availability, in parallel to the nutrient-activated Tor1 kinase. To define the Rio1 network, we identified its physical interactors, profiled its target genes/transcripts, mapped its chromatin-binding sites and integrated our data with yeast's protein-protein and protein-DNA interaction catalogs using network computation. We experimentally confirmed network components and localized Rio1 also to mitochondria and vacuoles. Via its network, Rio1 commands protein synthesis (ribosomal gene expression, assembly and activity) and turnover (26S proteasome expression), and impinges on metabolic, energy-production and cell-cycle programs. We find that Rio1 activity is conserved to humans and propose that pathological RIOK1 may fuel promiscuous transcription, ribosome production, chromosomal instability, unrestrained metabolism and proliferation; established contributors to cancer. Our study will advance the understanding of numerous processes, here revealed to depend on Rio1 activity

    Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cerevisiae

    No full text
    corecore