1,490 research outputs found

    Testing chameleon gravity with the Coma cluster

    Get PDF
    We propose a novel method to test the gravitational interactions in the outskirts of galaxy clusters. When gravity is modified, this is typically accompanied by the introduction of an additional scalar degree of freedom, which mediates an attractive fifth force. The presence of an extra gravitational coupling, however, is tightly constrained by local measurements. In chameleon modifications of gravity, local tests can be evaded by employing a screening mechanism that suppresses the fifth force in dense environments. While the chameleon field may be screened in the interior of the cluster, its outer region can still be affected by the extra force, introducing a deviation between the hydrostatic and lensing mass of the cluster. Thus, the chameleon modification can be tested by combining the gas and lensing measurements of the cluster. We demonstrate the operability of our method with the Coma cluster, for which both a lensing measurement and gas observations from the X-ray surface brightness, the X-ray temperature, and the Sunyaev-Zel'dovich effect are available. Using the joint observational data set, we perform a Markov chain Monte Carlo analysis of the parameter space describing the different profiles in both the Newtonian and chameleon scenarios. We report competitive constraints on the chameleon field amplitude and its coupling strength to matter. In the case of f(R) gravity, corresponding to a specific choice of the coupling, we find an upper bound on the background field amplitude of |f_{R0}|<6*10^{-5}, which is currently the tightest constraint on cosmological scales.Comment: 27 pages, 8 figures, version accepted for publication in JCA

    A PREPARAÇÃO DOS ALUNOS DE ADMINISTRAÇÃO DA UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA O MERCADO DE TRABALHO

    Get PDF
    A história e evolução da humanidade estão diretamente associadas às exigências do mercado de trabalho. Esta inter-relação tem se fortalecido, nas últimas duas décadas, com o advento de novas tecnologias de informações e a globalização da economia que desencadearam várias transformações no mercado de trabalho. Esses fenômenos sociais têm criado novas exigências na formação profissional dos futuros administradores, pois eles necessitam se preparar de forma diferenciada para encarar os desafios profissionais. Para entender este fenômeno social, realizou-se uma pesquisa com objetivo de analisar como estão se preparando para o mercado de trabalho os alunos do Curso de Administração da Universidade Federal de Santa Catarina (CAD-UFSC). As variáveis analisadas foram: perfil sócio-profissional dos entrevistados, expectativas e perspectivas de inserção ao mercado de trabalho e desafios extracurricular como: fluência em outros idiomas, intercâmbios estudantis, experiências profissionais complementares inerentes as expectativas profissionais. O estudo de caso classifica-se como descritivo e seu delineamento foi o levantamento. O universo da pesquisa foram os alunos do CAD-UFSC e a amostragem constituída por 212 alunos matriculados da quinta até a nona fase na modalidade presencial, diurno e noturno, do referido curso. A coleta de dados foi feita em agosto e setembro de 2010, através de um questionário semi-estruturado. O tratamento foi predominantemente qualitativo. Os resultados apontam as seguintes pretensões profissionais dos entrevistados no término do curso: abrir o próprio negócio, participar de processos de trainees e fazer concurso público. As deficiências apontadas pelos entrevistados foram: não terem realizado intercâmbios estudantis; não terem desenvolvido atividades extracurriculares como pesquisas, palestras e viagens técnicas; e, pouca experiência profissional em estágios ou empregos, mesmo que a maioria dos entrevistados já tenha duas experiências profissionais com os objetivos de aprendizado e de remuneração financeira

    Carbon Isotope and Isotopomer Fractionation in Cold Dense Cloud Cores

    Full text link
    We construct the gas-grain chemical network model which includes carbon isotopes (12C and 13C) with an emphasis on isotopomer-exchange reactions. Temporal variations of molecular abundances, the carbon isotope ratios (12CX/13CX) and the isotopomer ratios (12C13CX/13C12CX) of CCH and CCS in cold dense cloud cores are investigated by numerical calculations. We confirm that the isotope ratios of molecules, both in the gas phase and grain surfaces, are significantly different depending on whether the molecule is formed from the carbon atom (ion) or the CO molecule. Molecules formed from carbon atoms have the CX/13CX ratios greater than the elemental abundance ratio of [12C/13C]. On the other hand, molecules formed from CO molecules have the CX/13CX ratios smaller than the [12C/13C] ratio. We reproduce the observed C13CH/13CCH ratio in TMC-1, if the isotopomer exchange reaction, 13CCH + H C13CH + H + 8.1 K, proceeds with the forward rate coefficient kf > 10^-11 cm3 s-1. However, the C13CS/13CCS ratio is lower than that observed in TMC-1. We then assume the isotopomer exchange reaction catalyzed by the H atom, 13CCS + H C13CS + H + 17.4 K. In the model with this reaction, we reproduce the observed C13CS/13CCS, CCS/C13CS and CCS/13CCS ratio simultaneously.Comment: 38 pages, 11 figures, 4 tables, accepted for publication in Astrophysical Journa

    Integrin-linked kinase controls retinal angiogenesis and is linked to wnt signaling and exudative vitreoretinopathy

    Get PDF
    Familial exudative vitreoretinopathy (FEVR) is a human disease characterized by defective retinal angiogenesis and associated complications that can result in vision loss. Defective Wnt/β-catenin signaling is an established cause of FEVR, whereas other molecular alterations contributing to the disease remain insufficiently understood. Here, we show that integrin-linked kinase (ILK), a mediator of cell-matrix interactions, is indispensable for retinal angiogenesis. Inactivation of the murine Ilk gene in postnatal endothelial cells results in sprouting defects, reduced endothelial proliferation and disruption of the blood-retina barrier, resembling phenotypes seen in established mouse models of FEVR. Retinal vascularization defects are phenocopied by inducible inactivation of the gene for α-parvin (Parva), an interactor of ILK. Screening genomic DNA samples from exudative vitreoretinopathy patients identifies three distinct mutations in human ILK, which compromise the function of the gene product in vitro. Together, our data suggest that defective cell-matrix interactions are linked to Wnt signaling and FEVR

    On the internal structure of starless cores. II. A molecular survey of L1498 and L1517B

    Get PDF
    [Abridged] We present a molecular survey of the starless cores L1498 and L1517B. These cores have been selected for their relative isolation and close-to-round shape, and they have been observed in a number of lines of 13 molecular species (4 already presented in the first part of this series): CO, CS, N2H+, NH3, CH3OH, SO, C3H2, HC3N, C2S, HCN, H2CO, HCO+, and DCO+. Using a physical model of core structure and a Monte Carlo radiative transfer code, we determine for each core a self-consistent set abundances that fits simultaneously the observed radial profile of integrated intensity and the emergent spectrum towards the core center (for abundant species, optically thin isopologues are used). From this work, we find that L1498 and L1517B have similar abundance patterns, with most species suffering a significant drop toward the core center. This occurs for CO, CS, CH3OH, SO, C3H2, HC3N, C2S, HCN, H2CO, HCO+, and DCO+, which we fit with profiles having a sharp central hole. The size of this hole varies with molecule: DCO+, HCN, and HC3N have the smallest holes while SO, C2S and CO have the largest holes. Only N2H+ and NH3 are present in the gas phase at the core centers. From the different behavior of molecules, we select SO, C2S, and CH3OH as the most sensitive tracers of molecular depletion. Comparing our abundance determinations with the predictions from current chemical models we find order of magnitude discrepancies. Finally, we show how the ``contribution function'' can be used to study the formation of line profiles from the different regions of a core.Comment: 22 pages, 12 figures, A&A accepte

    Comparison of acute kidney injury following brain death between male and female rats

    Get PDF
    Background: Clinical reports associate kidneys from female donors with worse prognostic in male recipients. Brain Death (BD) produces immunological and hemodynamic disorders that affect organ viability. Following BD, female rats are associated with increased renal inflammation interrelated with female sex hormone reduction. Here, the aim was to investigate the effects of sex on BD-induced Acute Kidney Injury (AKI) using an Isolated Perfused rat Kidney (IPK) model. Methods: Wistar rats, females, and males (8 weeks old), were maintained for&nbsp;4h after BD. A left nephrectomy was performed and the kidney was preserved in a cold saline solution (30&nbsp;min). IPK was performed under normothermic temperature (37°C) for&nbsp;90&nbsp;min using WME as perfusion solution. AKI was assessed by morphological analyses, staining of complement system components and inflammatory cell markers, perfusion flow, and creatinine clearance. Results: BD-male kidneys had decreased perfusion flow on IPK, a phenomenon that was not observed in the kidneys of BD-females (p&nbsp;&lt;&nbsp;0.0001). BD-male kidneys presented greater proximal (p&nbsp;=&nbsp;0.0311) and distal tubule (p&nbsp;=&nbsp;0.0029) necrosis. However, BD-female kidneys presented higher expression of eNOS (p&nbsp;=&nbsp;0.0060) and greater upregulation of inflammatory mediators, iNOS (p&nbsp;=&nbsp;0.0051), and Caspase-3 (p&nbsp;=&nbsp;0.0099). In addition, both sexes had increased complement system formation (C5b-9) (p=0.0005), glomerular edema (p&nbsp;=&nbsp;0.0003), and nNOS (p&nbsp;=&nbsp;0.0051). Conclusion: The present data revealed an important sex difference in renal perfusion in the IPK model, evidenced by a pronounced reduction in perfusate flow and low eNOS expression in the BD-male group. Nonetheless, the upregulation of genes related to the proinflammatory cascade suggests a progressive inflammatory process in BD-female kidneys

    Comparison of acute kidney injury following brain death between male and female rats

    Get PDF
    Background: Clinical reports associate kidneys from female donors with worse prognostic in male recipients. Brain Death (BD) produces immunological and hemodynamic disorders that affect organ viability. Following BD, female rats are associated with increased renal inflammation interrelated with female sex hormone reduction. Here, the aim was to investigate the effects of sex on BD-induced Acute Kidney Injury (AKI) using an Isolated Perfused rat Kidney (IPK) model. Methods: Wistar rats, females, and males (8 weeks old), were maintained for 4h after BD. A left nephrectomy was performed and the kidney was preserved in a cold saline solution (30 min). IPK was performed under normothermic temperature (37°C) for 90 min using WME as perfusion solution. AKI was assessed by morphological analyses, staining of complement system components and inflammatory cell markers, perfusion flow, and creatinine clearance. Results: BD-male kidneys had decreased perfusion flow on IPK, a phenomenon that was not observed in the kidneys of BD-females (p &lt; 0.0001). BD-male kidneys presented greater proximal (p = 0.0311) and distal tubule (p = 0.0029) necrosis. However, BD-female kidneys presented higher expression of eNOS (p = 0.0060) and greater upregulation of inflammatory mediators, iNOS (p = 0.0051), and Caspase-3 (p = 0.0099). In addition, both sexes had increased complement system formation (C5b-9) (p=0.0005), glomerular edema (p = 0.0003), and nNOS (p = 0.0051). Conclusion: The present data revealed an important sex difference in renal perfusion in the IPK model, evidenced by a pronounced reduction in perfusate flow and low eNOS expression in the BD-male group. Nonetheless, the upregulation of genes related to the proinflammatory cascade suggests a progressive inflammatory process in BD-female kidneys.</p

    Treatment with 17 beta-estradiol protects donor heart against brain death effects in female rat

    Get PDF
    The viability of donor organs is reduced by hemodynamic and immunologic alterations caused by brain death (BD). Female rats show higher heart inflammation associated with the reduction in female sex hormones after BD. This study investigated the effect of 17 beta-estradiol (E2) on BD-induced cardiac damage in female rats. Groups of female Wistar rats were assigned: Sham-operation (Sham), brain death (BD), treatment with E2 (50 mu g/ml, 2 ml/h) 3 h after BD (E2-T3), or immediately after BD confirmation (E2-T0). White blood cell (WBC) count was analyzed; cytokines and troponin-I were quantified. Heart histopathological changes and expression of endothelial nitric oxide synthase, endothelin-1, intercellular adhesion molecule-1, BCL-2, and caspase-3 were evaluated. Cardiac function was continuously assessed for 6 h by left ventricular pressure-volume loop analysis. E2 decreased the BD-induced median serum concentration of troponin-I (BD:864.2 vs. E2-T0:401.4;P = 0.009), increased BCL-2 (BD:0.086 vs. E2-T0:0.158; P = 0.0278) and eNOS median expression in the cardiac tissue (BD:0.001 vs. E2-T0:0.03 and E2-T3:0.0175; P <0.0001), and decreased caspase-3 (BD:0.025 vs. E2-T0:0.006 and E2-T3:0.019; P = 0.006), WBC counts, leukocyte infiltration, and hemorrhage. 17 beta-estradiol treatment was effective in reducing cardiac tissue damage in brain-dead female rats owing to its ability to reduce leukocyte infiltration and prevent cardiomyocyte apoptosis

    17β-Estradiol Treatment Protects Lungs Against Brain Death Effects in Female Rat Donor

    Get PDF
    Background: Brain death (BD) affects the viability of lungs for transplantation. A correlation exists between high lung inflammation after BD and the decrease in female sex hormones, especially estradiol. Therefore, we investigated the effects of 17β-estradiol (E2) treatment on the lungs of female brain dead rats. Methods: Female Wistar rats were divided into 4 groups: BD (submitted to BD for 6 h), sham (false-operated), E2-T0 (treated with E2 immediately after BD; 50 μg/ml, 2 ml/h), and E2-T3 (treated with E2 after 3 h of BD; 50 μg/ml, 2 ml/h). Lung edema, hemorrhage, and leukocyte infiltration were analyzed. Adhesion molecules were evaluated and analysis of NO synthase gene and protein expression was performed using RT-PCR and immunohistochemistry, respectively. Release of chemokines and matrix degradation in the lungs were analyzed. Results: BD increased leukocyte infiltration, as shown by intravital microscopy (P=0.017), bronchoalveolar lavage cell count (P=0.016), the release of inflammatory mediators (P=0.02), and expression of adhesion molecules. BD also increased microvascular permeability and the expression and activity of MMP-9 in the lungs. E2 treatment reduced leukocyte infiltration, especially in the E2-T3 group, release of inflammatory mediators, adhesion molecules, and MMP activity in the lungs. Conclusions: E2 treatment was successful in controlling the lung inflammatory response in females submitted to BD. Our results suggest that E2 directly decreases the release of chemokines, restraining cell traffic into the lungs. Thus, E2 has a therapeutic potential, and its role in improving donor lung quality should be explored further
    corecore