22 research outputs found

    The Impact of Blood Pressure on Kidney Function in the Elderly: A Cross-Sectional Study

    No full text
    Background/Aims: Intensive blood pressure (BP) target decreases blood perfusion of kidneys that attenuates the benefits of BP treatment in elderly hypertensive individuals. The optimal BP goal for renal function in the hypertensive elderly has been unclear. We investigated the impact of BP on renal function to define the appropriate BP target in the elderly. Methods: A total of 28,258 elderly subjects were categorized into normotensive (Norm), hypotensive (Hypo) and hypertensive (Hyper) groups according to BP levels. Systolic, diastolic and pulse BP (SBP, DBP and PBP) were further stratified by 10 mmHg. Blood urea nitrogen, serum creatinine, uric acid, glomerular filtration rate (GFR), renal insufficiency prevalence (RIP) and proteinuria prevalence (PP) were compared among different groups and BP strata. The RIP and PP in the elderly with obesity, hyperlipidemia or diabetes in Norm, Hypo and Hyper groups were evaluated. Results: GFR in Hypo and Hyper groups was significantly lower than that in Norm group. The RIP and PP was higher in Hypo and Hyper groups than that in the Norm group. Proteinuria became more prevalent when SBP was >140 mmHg or 80mmHg increased PP while DBP60 mmHg led to an increased RIP and PP. Obesity or hyperlipidemia only combined with hypertension caused a significantly increased RIP and PP. Diabetes independent of hypertension contributed to higher RIP and PP. Conclusions: The most beneficial BP target for kidney function in the elderly may be SBP of 90-140 mmHg and DBP of 70-80 mmHg. PBP <60 mmHg may be appropriate

    Core–Shell Magnetic Molecularly Imprinted Polymers as Sorbent for Sulfonylurea Herbicide Residues

    No full text
    Sulfonylurea herbicides are widely used at lower dosage for controlling broad-leaf weeds and some grasses in cereals and economic crops. It is important to develop a highly efficient and selective pretreatment method for analyzing sulfonylurea herbicide residues in environments and samples from agricultural products based on magnetic molecularly imprinted polymers (MIPs). The MIPs were prepared by a surface molecular imprinting technique especially using the vinyl-modified Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> nanoparticle as the supporting matrix, bensulfuron-methyl (BSM) as the template molecule, methacrylic acid (MAA) as a functional monomer, trimethylolpropane trimethacrylate (TRIM) as a cross-linker, and azodiisobutyronitrile (AIBN) as an initiator. The MIPs show high affinity, recognition specificity, fast mass transfer rate, and efficient adsorption performance toward BSM with the adsorption capacity reaching up to 37.32 mg g<sup>–1</sup>. Furthermore, the MIPs also showed cross-selectivity for herbicides triasulfuron (TS), prosulfuron (PS), and pyrazosulfuron-ethyl (PSE). The MIP solid phase extraction (SPE) column was easier to operate, regenerate, and retrieve compared to those of C<sub>18</sub> SPE column. The developed method showed highly selective separation and enrichment of sulfonylurea herbicide residues, which enable its application in the pretreatment of multisulfonylurea herbicide residues
    corecore