35 research outputs found

    Phase and Amplitude Responses of Narrow-Band Optical Filter Measured by Microwave Network Analyzer

    Get PDF
    The phase and amplitude responses of a narrow-band optical filter are measured simultaneously using a microwave network analyzer. The measurement is based on an interferometric arrangement to split light into two paths and then combine them. In one of the two paths, a Mach-Zehnder modulator generates two tones without carrier and the narrow-band optical filter just passes through one of the tones. The temperature and environmental variations are removed by separated phase and amplitude averaging. The amplitude and phase responses of the optical filter are measured to the resolution and accuracy of the network analyzer

    Network Biology of Tumor Stem-like Cells Identified a Regulatory Role of CBX5 in Lung Cancer

    Get PDF
    Mounting evidence links cancers possessing stem-like properties with worse prognosis. Network biology with signal processing mechanics was explored here using expression profiles of a panel of tumor stem-like cells (TSLCs). The profiles were compared to their parental tumor cells (PTCs) and the human embryonic stem cells (hESCs), for the identification of gene chromobox homolog 5, CBX5, as a potential target for lung cancer. CBX5 was found to regulate the stem-like properties of lung TSLCs and was predictive of lung cancer prognosis. The investigation was facilitated by finding target genes based on modeling epistatic signaling mechanics via a predictive and scalable network-based survival model. Topologically-weighted measurements of CBX5 were synchronized with those of BIRC5, DNMT1, E2F1, ESR1, MLH1, MSH2, RB1, SMAD1 and TAF5. We validated our findings in another Taiwanese lung cancer cohort, as well as in knockdown experiments using sh-CBX5 RNAi both in vitro and in vivo.National Science Council (China) (NSC grant 100-2325-B-010-010-MY3/98-2314-B-010-024-MY2/97-3111-B075-001-MY3/ 96-2314-075-056-MY3)National Yang-Ming University (Ministry of Education, Aim for the Top University Plan: 96ADD122, 96ADD125, 96ADT191, 97ACD113, 97ACT302, 98ACT302, 98ACD107, 98ACT192 and Brain Research Center-3T-MRI project)))Taipei Veterans General Hospital (98-C1-099/E1-003/ER3-001)Taipei Veterans General Hospital (Joint Projects of VGHUST (98-G6-6/ 98-P1-01/99-P6-39)Chi Mei Medical Center (CMYM9801)Yen-Tjing-Ling Medical Foundation (96/97/98)Taipei City Hospital (96-002-62-092)Technology Development Program for Academia (TDPA; 98-EC-17-A-19-S2-0107)Taiwan. Department of Industrial Technology, Ministry of Economic AffairsNational Science Council (China) (NSC 101-2325-B-010 -009)Taiwan. Department of Health. Cancer Research Center of Excellence (DOH101-TD-C-111-007

    Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells

    Get PDF
    AbstractBackgroundGlioblastoma multiforme (GBM) is the most lethal type of adult brain cancer and performs outrageous growth and resistance regardless of adjuvant chemotherapies, eventually contributing to tumor recurrence and poor outcomes. Considering the common heterogeneity of cancer cells, the imbalanced regulatory mechanism could be switched on/off and contribute to drug resistance. Moreover, the subpopulation of GBM cells was recently discovered to share similar phenotypes with neural stem cells. These cancer stem cells (CSCs) promote the potency of tumor initiation. As a result, targeting of glioma stem cells has become the dominant way of improving the therapeutic outcome against GBM and extending the life span of patients. Among the biomarkers of CSCs, CD-133 (prominin-1) has been known to effectively isolate CSCs from cancer population, including GBM; however, the underlying mechanism of how stemness genes manipulate CSC-associated phenotypes, such as tumor initiation and relapse, is still unclear.MethodsTumorigenicity, drug resistance and embryonic stem cell markers were examined in primary CD133-positive (CD133+) GBM cells and CD133+ subpopulation. Stemness signature of CD133+ GBM cells was identified using microarray analysis. Stem cell potency, tumorigenicity and drug resistance were also tested in differential expression of SOX2 in GBM cells.ResultsIn this study, high tumorigenic and drug resistance was noticed in primary CD-133+ GBM cells; meanwhile, plenty of embryonic stem cell markers were also elevated in the CD-133+ subpopulation. Using microarray analysis, we identified SOX2 as the most enriched gene among the stemness signature in CD133+ GBM cells. Overexpression of SOX2 consistently enhanced the stem cell potency in the GBM cell lines, whereas knockdown of SOX2 dramatically withdrew CD133 expression in CD133+ GBM cells. Additionally, we silenced SOX2 expression using RNAi system, which abrogated the ability of tumor initiation as well as drug resistance of CD133+ GBM cells, suggesting that SOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells.ConclusionSOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells. Our results not only revealed the genetic plasticity contributing to drug resistance and stemness but also demonstrated the dominant role of SOX2 in maintenance of GBM CSCs, which may provide a novel therapeutic target to overcome the conundrum of poor survival of brain cancers

    Enhanced Differentiation of Three-Gene-Reprogrammed Induced Pluripotent Stem Cells into Adipocytes via Adenoviral-Mediated PGC-1α Overexpression

    Get PDF
    Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs), may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys

    Synthesis and Characterization of Indium Tin Oxide Nanowires with Surface Modification of Silver Nanoparticles by Electrochemical Method

    No full text
    In this study, indium tin oxide nanowires (ITO NWs) with high density and crystallinity were synthesized by chemical vapor deposition (CVD) via a vapor–liquid–solid (VLS) route; the NWs were decorated with 1 at% and 3 at% silver nanoparticles on the surface by a unique electrochemical method. The ITO NWs possessed great morphologies with lengths of 5~10 μm and an average diameter of 58.1 nm. Characterization was conducted through transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS) to identify the structure and composition of the ITO NWs. The room temperature photoluminescence (PL) studies show that the ITO NWs were of visible light-emitting properties, and there were a large number of oxygen vacancies on the surface. The successful modification of Ag was confirmed by TEM, XRD and XPS. PL analysis reveals that there was an extra Ag signal at around 1.895 eV, indicating the potential application of Ag-ITO NWs as nanoscale optical materials. Electrical measurements show that more Ag nanoparticles on the surface of ITO NWs contributed to higher resistivity, demonstrating the change in the electron transmission channel of the Ag-ITO NWs. ITO NWs and Ag-ITO NWs are expected to enhance the performance of electronic and optoelectronic devices

    Synthesis and Physical Characteristics of Undoped and Potassium-Doped Cubic Tungsten Trioxide Nanowires through Thermal Evaporation

    No full text
    We report an efficient method to synthesize undoped and K-doped rare cubic tungsten trioxide nanowires through the thermal evaporation of WO3 powder without a catalyst. The WO3 nanowires are reproducible and stable with a low-cost growth process. The thermal evaporation processing was conducted in a three-zone horizontal tube furnace over a temperature range of 550–850 °C, where multiple substrates were placed at different temperature zones. The processing parameters, including pressure, temperature, type of gas, and flow rate, were varied and studied in terms of their influence on the morphology, aspect ratio and density of the nanowires. The morphologies of the products were observed with scanning electron microscopy. High resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction studies were conducted to further identify the chemical composition, crystal structure and growth direction of the nanostructures. Additionally, the growth mechanism has been proposed. Furthermore, we investigated the potassium doping effect on the physical properties of the nanostructures. Photoluminescence measurements show that there were shorter emission bands at 360 nm and 410 nm. Field emission measurements show that the doping effect significantly reduced the turn-on electric field and increased the enhancement factor. Furthermore, as compared with related previous research, the K-doped WO3 nanowires synthesized in this study exhibited excellent field emission properties, including a superior field enhancement factor and turn-on electric field. The study reveals the potential of WO3 nanowires in promising applications for sensors, field emitters and light-emitting diodes

    Dysregulated Immunological Functionome and Dysfunctional Metabolic Pathway Recognized for the Pathogenesis of Borderline Ovarian Tumors by Integrative Polygenic Analytics

    No full text
    The pathogenesis and molecular mechanisms of ovarian low malignant potential (LMP) tumors or borderline ovarian tumors (BOTs) have not been fully elucidated to date. Surgery remains the cornerstone of treatment for this disease, and diagnosis is mainly made by histopathology to date. However, there is no integrated analysis investigating the tumorigenesis of BOTs with open experimental data. Therefore, we first utilized a functionome-based speculative model from the aggregated obtainable datasets to explore the expression profiling data among all BOTs and two major subtypes of BOTs, serous BOTs (SBOTs) and mucinous BOTs (MBOTs), by analyzing the functional regularity patterns and clustering the separate gene sets. We next prospected and assembled the association between these targeted biomolecular functions and their related genes. Our research found that BOTs can be accurately recognized by gene expression profiles by means of integrative polygenic analytics among all BOTs, SBOTs, and MBOTs; the results exhibited the top 41 common dysregulated biomolecular functions, which were sorted into four major categories: immune and inflammatory response-related functions, cell membrane- and transporter-related functions, cell cycle- and signaling-related functions, and cell metabolism-related functions, which were the key elements involved in its pathogenesis. In contrast to previous research, we identified 19 representative genes from the above classified categories (IL6, CCR2 for immune and inflammatory response-related functions; IFNG, ATP1B1, GAS6, and PSEN1 for cell membrane- and transporter-related functions; CTNNB1, GATA3, and IL1B for cell cycle- and signaling-related functions; and AKT1, SIRT1, IL4, PDGFB, MAPK3, SRC, TWIST1, TGFB1, ADIPOQ, and PPARGC1A for cell metabolism-related functions) that were relevant in the cause and development of BOTs. We also noticed that a dysfunctional pathway of galactose catabolism had taken place among all BOTs, SBOTs, and MBOTs from the analyzed gene set databases of canonical pathways. With the help of immunostaining, we verified significantly higher performance of interleukin 6 (IL6) and galactose-1-phosphate uridylyltransferase (GALT) among BOTs than the controls. In conclusion, a bioinformatic platform of gene-set integrative molecular functionomes and biophysiological pathways was constructed in this study to interpret the complicated pathogenic pathways of BOTs, and these important findings demonstrated the dysregulated immunological functionome and dysfunctional metabolic pathway as potential roles during the tumorigenesis of BOTs and may be helpful for the diagnosis and therapy of BOTs in the future
    corecore