23 research outputs found

    In vivo characterization of the role of tissue-specific translation elongation factor 1A2 in protein synthesis reveals insights into muscle atrophy

    Get PDF
    Translation elongation factor 1A2 (eEF1A2), uniquely among translation factors, is expressed specifically in neurons and muscle. eEF1A2‐null mutant wasted mice develop an aggressive, early‐onset form of neurodegeneration, but it is unknown whether the wasting results from denervation of the muscles, or whether the mice have a primary myopathy resulting from loss of translation activity in muscle. We set out to establish the relative contributions of loss of eEF1A2 in the different tissues to this postnatal lethal phenotype. We used tissue‐specific transgenesis to show that correction of eEF1A2 levels in muscle fails to ameliorate the overt phenotypic abnormalities or time of death of wasted mice. Molecular markers of muscle atrophy such as Fbxo32 were dramatically upregulated at the RNA level in wasted mice, both in the presence and in the absence of muscle‐specific expression of eEF1A2, but the degree of upregulation at the protein level was significantly lower in those wasted mice without transgene‐derived expression of eEF1A2 in muscle. This provides the first in vivo confirmation that eEF1A2 plays an important role in translation. In spite of the inability of the nontransgenic wasted mice to upregulate key atrogenes at the protein level in response to denervation to the same degree as their transgenic counterparts, there were no measurable differences between transgenic and nontransgenic wasted mice in terms of weight loss, grip strength, or muscle pathology. This suggests that a compromised ability fully to execute the atrogene pathway in denervated muscle does not affect the process of muscle atrophy in the short term

    Haploinsufficiency for Translation Elongation Factor eEF1A2 in Aged Mouse Muscle and Neurons Is Compatible with Normal Function

    Get PDF
    Translation elongation factor isoform eEF1A2 is expressed in muscle and neurons. Deletion of eEF1A2 in mice gives rise to the neurodegenerative phenotype "wasted" (wst). Mice homozygous for the wasted mutation die of muscle wasting and neurodegeneration at four weeks post-natal. Although the mutation is said to be recessive, aged heterozygous mice have never been examined in detail; a number of other mouse models of motor neuron degeneration have recently been shown to have similar, albeit less severe, phenotypic abnormalities in the heterozygous state. We therefore examined the effects of ageing on a cohort of heterozygous +/wst mice and control mice, in order to establish whether a presumed 50% reduction in eEF1A2 expression was compatible with normal function. We evaluated the grip strength assay as a way of distinguishing between wasted and wild-type mice at 3-4 weeks, and then performed the same assay in older +/wst and wild-type mice. We also used rotarod performance and immunohistochemistry of spinal cord sections to evaluate the phenotype of aged heterozygous mice. Heterozygous mutant mice showed no deficit in neuromuscular function or signs of spinal cord pathology, in spite of the low levels of eEF1A2

    Prevalence of cognitive impairments and strengths in the early course of psychosis and depression.

    Get PDF
    BACKGROUND Studies investigating cognitive impairments in psychosis and depression have typically compared the average performance of the clinical group against healthy controls (HC), and do not report on the actual prevalence of cognitive impairments or strengths within these clinical groups. This information is essential so that clinical services can provide adequate resources to supporting cognitive functioning. Thus, we investigated this prevalence in individuals in the early course of psychosis or depression. METHODS A comprehensive cognitive test battery comprising 12 tests was completed by 1286 individuals aged 15-41 (mean age 25.07, s.d. 5.88) from the PRONIA study at baseline: HC (N = 454), clinical high risk for psychosis (CHR; N = 270), recent-onset depression (ROD; N = 267), and recent-onset psychosis (ROP; N = 295). Z-scores were calculated to estimate the prevalence of moderate or severe deficits or strengths (>2 s.d. or 1-2 s.d. below or above HC, respectively) for each cognitive test. RESULTS Impairment in at least two cognitive tests was as follows: ROP (88.3% moderately, 45.1% severely impaired), CHR (71.2% moderately, 22.4% severely impaired), ROD (61.6% moderately, 16.2% severely impaired). Across clinical groups, impairments were most prevalent in tests of working memory, processing speed, and verbal learning. Above average performance (>1 s.d.) in at least two tests was present for 40.5% ROD, 36.1% CHR, 16.1% ROP, and was >2 SDs in 1.8% ROD, 1.4% CHR, and 0% ROP. CONCLUSIONS These findings suggest that interventions should be tailored to the individual, with working memory, processing speed, and verbal learning likely to be important transdiagnostic targets

    The clinical relevance of formal thought disorder in the early stages of psychosis: results from the PRONIA study

    Get PDF
    Background Formal thought disorder (FTD) has been associated with more severe illness courses and functional deficits in patients with psychotic disorders. However, it remains unclear whether the presence of FTD characterises a specific subgroup of patients showing more prominent illness severity, neurocognitive and functional impairments. This study aimed to identify stable and generalizable FTD-subgroups of patients with recent-onset psychosis (ROP) by applying a comprehensive data-driven clustering approach and to test the validity of these subgroups by assessing associations between this FTD-related stratification, social and occupational functioning, and neurocognition. Methods 279 patients with ROP were recruited as part of the multi-site European PRONIA study (Personalised Prognostic Tools for Early Psychosis Management; www.pronia.eu). Five FTD-related symptoms (conceptual disorganization, poverty of content of speech, difficulty in abstract thinking, increased latency of response and poverty of speech) were assessed with Positive and Negative Symptom Scale (PANSS) and the Scale for the Assessment of Negative Symptoms (SANS). Results The results with two patient subgroups showing different levels of FTD were the most stable and generalizable clustering solution (predicted clustering strength value = 0.86). FTD-High subgroup had lower scores in social (p(fdr) Conclusions Clustering techniques allowed us to identify patients with more pronounced FTD showing more severe deficits in functioning and neurocognition, thus suggesting that FTD may be a relevant marker of illness severity in the early psychosis pathway.</p

    The clinical relevance of formal thought disorder in the early stages of psychosis: results from the PRONIA study

    Get PDF
    Background: Formal thought disorder (FTD) has been associated with more severe illness courses and functional deficits in patients with psychotic disorders. However, it remains unclear whether the presence of FTD characterises a specific subgroup of patients showing more prominent illness severity, neurocognitive and functional impairments. This study aimed to identify stable and generalizable FTD-subgroups of patients with recent-onset psychosis (ROP) by applying a comprehensive data-driven clustering approach and to test the validity of these subgroups by assessing associations between this FTD-related stratification, social and occupational functioning, and neurocognition. Methods: 279 patients with ROP were recruited as part of the multi-site European PRONIA study (Personalised Prognostic Tools for Early Psychosis Management; www.pronia.eu). Five FTD-related symptoms (conceptual disorganization, poverty of content of speech, difficulty in abstract thinking, increased latency of response and poverty of speech) were assessed with Positive and Negative Symptom Scale (PANSS) and the Scale for the Assessment of Negative Symptoms (SANS). Results: The results with two patient subgroups showing different levels of FTD were the most stable and generalizable clustering solution (predicted clustering strength value = 0.86). FTD-High subgroup had lower scores in social (p fdr < 0.001) and role (p fdr < 0.001) functioning, as well as worse neurocognitive performance in semantic (p fdr < 0.001) and phonological verbal fluency (p fdr < 0.001), short-term verbal memory (p fdr = 0.002) and abstract thinking (p fdr = 0.010), in comparison to FTD-Low group. Conclusions: Clustering techniques allowed us to identify patients with more pronounced FTD showing more severe deficits in functioning and neurocognition, thus suggesting that FTD may be a relevant marker of illness severity in the early psychosis pathway

    Traces of trauma – a multivariate pattern analysis of childhood trauma, brain structure and clinical phenotypes

    Get PDF
    Background: Childhood trauma (CT) is a major yet elusive psychiatric risk factor, whose multidimensional conceptualization and heterogeneous effects on brain morphology might demand advanced mathematical modeling. Therefore, we present an unsupervised machine learning approach to characterize the clinical and neuroanatomical complexity of CT in a larger, transdiagnostic context. Methods: We used a multicenter European cohort of 1076 female and male individuals (discovery: n = 649; replication: n = 427) comprising young, minimally medicated patients with clinical high-risk states for psychosis; patients with recent-onset depression or psychosis; and healthy volunteers. We employed multivariate sparse partial least squares analysis to detect parsimonious associations between combinations of items from the Childhood Trauma Questionnaire and gray matter volume and tested their generalizability via nested cross-validation as well as via external validation. We investigated the associations of these CT signatures with state (functioning, depressivity, quality of life), trait (personality), and sociodemographic levels. Results: We discovered signatures of age-dependent sexual abuse and sex-dependent physical and sexual abuse, as well as emotional trauma, which projected onto gray matter volume patterns in prefronto-cerebellar, limbic, and sensory networks. These signatures were associated with predominantly impaired clinical state- and trait-level phenotypes, while pointing toward an interaction between sexual abuse, age, urbanicity, and education. We validated the clinical profiles for all three CT signatures in the replication sample. Conclusions: Our results suggest distinct multilayered associations between partially age- and sex-dependent patterns of CT, distributed neuroanatomical networks, and clinical profiles. Hence, our study highlights how machine learning approaches can shape future, more fine-grained CT research

    Immunohistochemistry in aged spinal cord sections.

    No full text
    <p>Expression of phosphorylated neurofilaments, GFAP, and eEF1A2 in cervical spinal cord sections from 21 month old mice. The top panel in each case shows a section with primary antibody omitted from the protocol, the second panel from the top shows sections from a 24 day old wasted homozygote as a control, and the bottom two panels show sections from an aged matched wild-type and heterozygous male. The NF staining clearly shows perikaryal accumulation of NF staining in the wasted mouse section but not in the aged <i>+/wst</i> mouse. The GFAP staining shows a characteristic pattern of reactive astrocytes throughout the grey matter of the spinal cord, even in the aged wild-type mouse. The eEF1A2 shows no staining at all in the section from the <i>wst/wst</i> mouse as expected, and fainter but easily detectable, albeit reduced, staining in the aged <i>+/wst</i> sample.</p

    Grip strength analysis of young wasted mice.

    No full text
    <p>Forelimb (top panel) and all four limbs (bottom panel) grip strength analysis of wasted mice. The daily grip strength reading of 3 tests (measured in Newtons) were normalised to body weight (measured in grams). P values were calculated comparing wasted mice with controls (+/+ and <i>+/wst</i> combined). * indicates a P value<0.05, ** indicates a P value<0.01, and *** indicates a P value <0.001.</p

    Protein expression in aged mice.

    No full text
    <p>Western blots showing protein expression of eEF1A2 and GAPDH (as a loading control) of animals from the ageing cohort. Three 21month old animals from each group are shown. WT indicates wild-type animals, HET indicates heterozygous animals, M indicates a muscle sample (as an eEF1A2 positive control) and L indicates a liver sample (an eEF1A2 negative control), both from wild-type mice.</p
    corecore