831 research outputs found

    Biosynthesis of mycobacterial arabinogalactan: identification of a novel (13)arabinofuranosyltransferase

    Get PDF
    The cell wall mycolyl-arabinogalactan-peptidoglycan complex is essential in mycobacterial species, such as Mycobacterium tuberculosis and is the target of several anti-tubercular drugs. For instance, ethambutol targets arabinogalactan biosynthesis through inhibition of the arabinofuranosyltransferases Mt-EmbA and Mt-EmbB. A bioinformatics approach identified putative integral membrane proteins, MSMEG2785 in Mycobacterium smegmatis, Rv2673 in Mycobacterium tuberculosis and NCgl1822 in Corynebacterium glutamicum, with 10 predicted transmembrane domains and a glycosyltransferase motif (DDX), features that are common to the GT-C superfamily of glycosyltransferases. Deletion of M. smegmatis MSMEG2785 resulted in altered growth and glycosyl linkage analysis revealed the absence of AG (13)-linked arabinofuranosyl (Araf) residues. Complementation of the M. smegmatis deletion mutant was fully restored to a wild type phenotype by MSMEG2785 and Rv2673, and as a result, we have now termed this previously uncharacterized open reading frame, arabinofuranosyltransferase C (aftC). Enzyme assays using the sugar donor -D-arabinofuranosyl-1-monophosphoryldecaprenol (DPA) and a newly synthesized linear (15)-linked Ara5 neoglycolipid acceptor together with chemical identification of products formed, clearly identified AftC as a branching (13) arabinofuranosyltransferase. This newly discovered glycosyltransferase sheds further light on the complexities of Mycobacterium cell wall biosynthesis, such as in M. tuberculosis and related species and represents a potential new drug target

    Sensitive electrochemiluminescence (ECL) immunoassays for detecting lipoarabinomannan (LAM) and ESAT-6 in urine and serum from tuberculosis patients.

    Get PDF
    BackgroundTuberculosis (TB) infection was responsible for an estimated 1.3 million deaths in 2017. Better diagnostic tools are urgently needed. We sought to determine whether accurate TB antigen detection in blood or urine has the potential to meet the WHO target product profiles for detection of active TB.Materials and methodsWe developed Electrochemiluminescence (ECL) immunoassays for Lipoarabinomannan (LAM) and ESAT-6 detection with detection limits in the pg/ml range and used them to compare the concentrations of the two antigens in the urine and serum of 81 HIV-negative and -positive individuals with presumptive TB enrolled across diverse geographic sites.ResultsLAM and ESAT-6 overall sensitivities in urine were 93% and 65% respectively. LAM and ESAT-6 overall sensitivities in serum were 55% and 46% respectively. Overall specificity was ≥97% in all assays. Sensitivities were higher in HIV-positive compared to HIV-negative patients for both antigens and both sample types, with signals roughly 10-fold higher on average in urine than in serum. The two antigens showed similar concentration ranges within the same sample type and correlated.ConclusionsLAM and ESAT-6 can be detected in the urine and serum of TB patients, regardless of the HIV status and further gains in clinical sensitivity may be achievable through assay and reagent optimization. Accuracy in urine was higher with current methods and has the potential to meet the WHO accuracy target if the findings can be transferred to a point-of-care TB test

    Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes

    Get PDF
    ISWI proteins form the catalytic core of a subset of ATP-dependent chromatin remodelling activities in eukaryotes from yeast to man. Many of these complexes have been found to reposition nucleosomes, but with different directionalities. We find that the yeast Isw1a, Isw2 and Chd1 enzymes preferentially move nucleosomes towards more central locations on short DNA fragments whereas Isw1b does not. Importantly, the inherent positioning properties of the DNA play an important role in determining where nucleosomes are relocated to by all of these enzymes. However, a key difference is that the Isw1a, Isw2 and Chd1 enzymes are unable to move nucleosomes to positions closer than 15 bp from a DNA end whereas Isw1b can. We also find that there is a correlation between the inability of enzymes to move nucleosomes close to DNA ends and the preferential binding to nucleosomes bearing linker DNA. These observations suggest that the accessibility of linker DNA together with the positioning properties of the underlying DNA play important roles in determining the outcome of remodelling by these enzymes

    The Astounding World of Glycans from Giant Viruses

    Get PDF
    Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed

    The Snf2 Homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme

    Get PDF
    The Saccharomyces cerevisiae Fun30 (Function unknown now 30) protein shares homology with an extended family of Snf2-related ATPases. Here we report the purification of Fun30 principally as a homodimer with a molecular mass of about 250 kDa. Biochemical characterization of this complex reveals that it has ATPase activity stimulated by both DNA and chromatin. Consistent with this, it also binds to both DNA and chromatin. The Fun30 complex also exhibits activity in ATP-dependent chromatin remodeling assays. Interestingly, its activity in histone dimer exchange is high relative to the ability to reposition nucleosomes. Fun30 also possesses a weakly conserved CUE motif suggesting that it may interact specifically with ubiquitinylated proteins. However, in vitro Fun30 was found to have no specificity in its interaction with ubiquitinylated histones

    The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct AFM visualization of variant chromatin

    Get PDF
    Chromatin organization and dynamics is studied in this work at scales ranging from single nucleosome to nucleosomal array by using a unique combination of biochemical assays, single molecule imaging technique and numerical modeling. We demonstrate that a subtle modification in the nucleosome structure induced by the histone variant H2A.Bbd drastically modifies the higher order organization of the nucleosomal arrays. Importantly, as directly visualized by AFM, conventional H2A nucleosomal arrays exhibit specific local organization, in contrast to H2A.Bbd arrays, which show "beads on a string" structure. The combination of systematic image analysis and theoretical modeling allows a quantitative description relating the observed gross structural changes of the arrays to their local organization. Our results strongly suggest that higher-order organization of H1-free nucleosomal arrays is mainly determined by the fluctuation properties of individual nucleosomes. Moreover, numerical simulations suggest the existence of attractive interactions between nucleosomes to provide the degree of compaction observed for conventional chromatin fibers.Comment: Biophys J. in pres

    (1R,2R,3R,4R,5S)-2,3-Bis[(2S′)-2-acet­oxy-2-phenyl­acet­oxy]-4-azido-1-[(2,4-dinitro­phen­yl)hydrazono­meth­yl]bicyclo­[3.1.0]hexa­ne

    Get PDF
    In the title compound, C38H29N7O12, the five-membered ring adopts an envelope conformation in which the ‘flap’ is cis to the cyclo­propane group. This conformation is similar to those of other bicyclo­[3.1.0]hexane analogues for which crystal structures have been reported. The absolute configuration of the stereogenic centers on the cyclo­pentane ring, as determined by comparison with the known configurations of the stereogenic centers in the (2S)-2-acet­oxy-2-phenyl­acet­oxy groups, is 1(R), 2(R), 3(R), 4(R) and 5(S). An intramolecular N—H⋯O hydrogen bond is present

    Sequence Dependence of Transcription Factor-Mediated DNA Looping

    Get PDF
    DNA is subject to large deformations in a wide range of biological processes. Two key examples illustrate how such deformations influence the readout of the genetic information: the sequestering of eukaryotic genes by nucleosomes, and DNA looping in transcriptional regulation in both prokaryotes and eukaryotes. These kinds of regulatory problems are now becoming amenable to systematic quantitative dissection with a powerful dialogue between theory and experiment. Here we use a single-molecule experiment in conjunction with a statistical mechanical model to test quantitative predictions for the behavior of DNA looping at short length scales, and to determine how DNA sequence affects looping at these lengths. We calculate and measure how such looping depends upon four key biological parameters: the strength of the transcription factor binding sites, the concentration of the transcription factor, and the length and sequence of the DNA loop. Our studies lead to the surprising insight that sequences that are thought to be especially favorable for nucleosome formation because of high flexibility lead to no systematically detectable effect of sequence on looping, and begin to provide a picture of the distinctions between the short length scale mechanics of nucleosome formation and looping.Comment: Nucleic Acids Research (2012); Published version available at http://nar.oxfordjournals.org/cgi/content/abstract/gks473? ijkey=6m5pPVJgsmNmbof&keytype=re

    Preferential Nucleosome Occupancy at High Values of DNA Helical Rise

    Get PDF
    Nucleosomes are the basic structural units of eukaryotic chromatin and play a key role in the regulation of gene expression. Nucleosome formation depends on several factors, including properties of the sequence itself, but also physical constraints and epigenetic factors such as chromatin-remodelling enzymes. In this view, a sequence-dependent approach is able to capture a general tendency of a region to bind a histone octamer. A reference data set of positioned nucleosomes of Saccharomyces cerevisiae was used to study the role of DNA helical rise in histone–DNA interaction. Genomic sequences were transformed into arrays of helical rise values by a tetranucleotide code and then turned into profiles of mean helical rise values. These profiles resemble maps of nucleosome occupancy, suggesting that intrinsic histone–DNA interactions are linked to helical rise. The obtained results show that preferential nucleosome occupancy occurs where the mean helical rise reaches its largest values. Mean helical rise profiles obtained by using maps of positioned nucleosomes of the Drosophila melanogaster and Plasmodium falciparum genomes, as well as Homo sapiens chromosome 20 confirm that nucleosomes are mainly located where the mean helical rise reaches its largest values
    corecore