84 research outputs found

    Circulating tumor cells: approaches to isolation and characterization

    Get PDF
    Circulating tumor cells (CTCs) shed from primary and metastatic cancers are admixed with blood components and are thus rare, making their isolation and characterization a major technological challenge. CTCs hold the key to understanding the biology of metastasis and provide a biomarker to noninvasively measure the evolution of tumor genotypes during treatment and disease progression. Improvements in technologies to yield purer CTC populations amenable to better cellular and molecular characterization will enable a broad range of clinical applications, including early detection of disease and the discovery of biomarkers to predict treatment responses and disease progression

    The development process of user-oriented shopfloor software

    No full text

    Whole genome genetic variation and linkage disequilibrium in a diverse collection of Listeria monocytogenes isolates.

    No full text
    We performed whole-genome multi-locus sequence typing for 2554 genes in a large and heterogenous panel of 180 Listeria monocytogenes strains having diverse geographical and temporal origins. The subtyping data was used for characterizing genetic variation and evaluating patterns of linkage disequilibrium in the pan-genome of L. monocytogenes. Our analysis revealed the presence of strong linkage disequilibrium in L. monocytogenes, with ~99% of genes showing significant non-random associations with a large majority of other genes in the genome. Twenty-seven loci having lower levels of association with other genes were considered to be potential "hot spots" for horizontal gene transfer (i.e., recombination via conjugation, transduction, and/or transformation). The patterns of linkage disequilibrium in L. monocytogenes suggest limited exchange of foreign genetic material in the genome and can be used as a tool for identifying new recombinant strains. This can help understand processes contributing to the diversification and evolution of this pathogenic bacteria, thereby facilitating development of effective control measures

    The pb-zn (Ba) nonsulfide mineralizations at bou caĂŻd (ouarsenis, algeria): Mineralogy, isotope geochemistry, and genetic inferences

    No full text
    The ore deposits of Bou Caïd (Ouarsenis, Algeria) occur in Jurassic and Cretaceous sedimentary rocks. The barite and Pb-Zn (Fe, Cu, and F) ore deposits of Bou Caïd belong to vein-and karst-type. The mineralization is represented in the whole area by a mixture of barite (currently still exploited) and nonsulfides consisting of hemimorphite, smithsonite, cerussite, hydrozincite, and Feoxy-hydroxides, with remnants of galena and sphalerite in variable proportions. Mineralogical and geochemical analyses were carried out on the Bou Caïd nonsulfides. Several samples representing nonsulfide mineralization (Grand Pic and at Srâa Abdelkader) were subjected to a multidisciplinary analytical approach, using optical microscopy (OM), powder X-ray diffraction (PXRD), Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM-EDS). Nonsulfide mineralization consists of a mixture of hemimorphite, hydrozincite, smithsonite, cerussite, and Fe-oxy-hydroxides, often with zebra-like textures. In the proposed paragenetic scheme, covellite and chalcocite are followed by cerussite, jarosite, smithsonite, and hydrozincite. Then, hemimorphite crystallizes, accompanied by mimetite, traces of malachite and clay minerals (also Zn-bearing), precipitate. Fe(Mn)-oxy-hydroxides can form during various phases of the supergene stage. Small amounts of late barite can be related to partial remobilization and occur as reprecipitation products. Stable isotope analyses were performed on the calcites and metal carbonates of the supergene ores. Carbon and oxygen isotope values of smithsonite and hydrozincite were comparable to published supergene Zn carbonate data. The isotope values of the Bou Caïd calcites fell both into the hydrothermal carbonate and in the supergene fields

    A rare large mutation involving two exons of the SP-B gene in an infant with severe respiratory distress

    Get PDF
    Hereditary surfactant protein-B (SP-B) deficiency is a rare autosomal recessive disease of newborn infants causing severe respiratory failure and death within the first year of life. The most common cause of SP-B deficiency is a frameshift mutation in exon 4 (121ins2) in the gene encoding SP-B. We report a term infant with unremitting respiratory distress who was unresponsive to all treatment modalities. The parents were consanguineous and a term sibling of the infant had died due to respiratory failure without a certain diagnosis. In the first step of the diagnostic work-up, common genetic mutations for SP-B, surfactant protein C and ATP-binding cassette s3 were absent, however sequencing of SP-B gene revealed a large homozygous genomic deletion covering exon 8 and 9. In this case report, we aimed to emphasize further genetic evaluation in all cases suggestive of surfactant dysfunction, even if common mutations are absent
    • …
    corecore