50 research outputs found

    Women in the Sanctuary Movement: A Case Study in Chicago

    Get PDF

    Visión general de las percepciones regionales sobre el rol de la educación superior para el desarrollo humano y social

    Get PDF
    Nuestro informe ha estudiado en su Parte I temas globales seleccionados acerca del rol de la educación superior para el desarrollo humano y social. Este trabajo es una síntesis de las perspectivas regionales -África Subsahariana, Estados Árabes, Asia y el Pacífico, Europa, América del Norte y América Latina y el Caribe- acerca del rol de la educación superior para el desarrollo humano y social basado en la contribución de los autores en cinco áreas claves: una de ellas es el estado de la educacion superior en cada región desde la celebración de la Conferencia Mundial sobre Educación Superior (CMES, 1998); y otra de las cuatro áreas clave se refiere a los posibles roles futuros, estrategias y acciones de la educación superior para promover el desarrollo humano y social.Peer Reviewe

    Nucleoside analogue activators of cyclic AMP-independent protein kinase A of Trypanosoma

    Get PDF
    Protein kinase A (PKA), the main effector of cAMP in eukaryotes, is a paradigm for the mechanisms of ligand-dependent and allosteric regulation in signalling. Here we report the orthologous but cAMP-independent PKA of the protozoan Trypanosoma and identify 7-deazanucleosides as potent activators (EC50 >= 6.5 nM) and high affinity ligands (K-D >= 8 nM). A co-crystal structure of trypanosome PKA with 7-cyano-7-deazainosine and molecular docking show how substitution of key amino acids in both CNB domains of the regulatory subunit and its unique C-terminal alpha D helix account for this ligand swap between trypanosome PKA and canonical cAMP-dependent PKAs. We propose nucleoside-related endogenous activators of Trypanosoma brucei PKA (TbPKA). The existence of eukaryotic CNB domains not associated with binding of cyclic nucleotides suggests that orphan CNB domains in other eukaryotes may bind undiscovered signalling molecules. Phosphoproteome analysis validates 7-cyano-7-deazainosine as powerful cell-permeable inducer to explore cAMP-independent PKA signalling in medically important neglected pathogens

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Clinical practice guidelines for the diagnosis and surveillance of BAP1 tumour predisposition syndrome

    Get PDF
    BRCA1-associated protein-1 (BAP1) is a recognised tumour suppressor gene. Germline BAP1 pathogenic/likely pathogenic variants are associated with predisposition to multiple tumours, including uveal melanoma, malignant pleural and peritoneal mesothelioma, renal cell carcinoma and specific non-malignant neoplasms of the skin, as part of the autosomal dominant BAP1-tumour predisposition syndrome. The overall lifetime risk for BAP1 carriers to develop at least one BAP1-associated tumour is up to 85%, although due to ascertainment bias, current estimates of risk are likely to be overestimated. As for many rare cancer predisposition syndromes, there is limited scientific evidence to support the utility of surveillance and, therefore, management recommendations for BAP1 carriers are based on expert opinion. To date, European recommendations for BAP1 carriers have not been published but are necessary due to the emerging phenotype of this recently described syndrome and increased identification of BAP1 carriers via large gene panels or tumour sequencing. To address this, the Clinical Guideline Working Group of the CanGene-CanVar project in the United Kingdom invited European collaborators to collaborate to develop guidelines to harmonize surveillance programmes within Europe. Recommendations with respect to BAP1 testing and surveillance were achieved following literature review and Delphi survey completed by a core group and an extended expert group of 34 European specialists including Geneticists, Ophthalmologists, Oncologists, Dermatologists and Pathologists. It is recognised that these largely evidence-based but pragmatic recommendations will evolve over time as further data from research collaborations informs the phenotypic spectrum and surveillance outcomes.</p

    PATJ Low Frequency Variants Are Associated with Worse Ischemic Stroke Functional Outcome: A Genome-Wide Meta-Analysis

    Get PDF
    RATIONALE: Ischemic stroke is among the leading causes of adult disability. Part of the variability in functional outcome after stroke has been attributed to genetic factors but no locus has been consistently associated with stroke outcome. OBJECTIVE: Our aim was to identify genetic loci influencing the recovery process using accurate phenotyping to produce the largest GWAS (genome-wide association study) in ischemic stroke recovery to date. METHODS AND RESULTS: A 12-cohort, 2-phase (discovery-replication and joint) meta-analysis of GWAS included anterior-territory and previously independent ischemic stroke cases. Functional outcome was recorded using 3-month modified Rankin Scale. Analyses were adjusted for confounders such as discharge National Institutes of Health Stroke Scale. A gene-based burden test was performed. The discovery phase (n=1225) was followed by open (n=2482) and stringent joint-analyses (n=1791). Those cohorts with modified Rankin Scale recorded at time points other than 3-month or incomplete data on previous functional status were excluded in the stringent analyses. Novel variants in PATJ (Pals1-associated tight junction) gene were associated with worse functional outcome at 3-month after stroke. The top variant was rs76221407 (G allele, β=0.40, P=1.70×10-9). CONCLUSIONS: Our results identify a set of common variants in PATJ gene associated with 3-month functional outcome at genome-wide significance level. Future studies should examine the role of PATJ in stroke recovery and consider stringent phenotyping to enrich the information captured to unveil additional stroke outcome loci

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Humoral Immunity in Immunosuppressed IBD Patients after the Third SARS-CoV-2 Vaccination: A Comparison with Healthy Control Subjects

    No full text
    Introduction: The COVID-19 pandemic is a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination against COVID-19 is crucial for preventing severe illness and controlling the pandemic. This study aimed to examine how immunosuppressed patients with inflammatory bowel disease (IBD) responded to the third mRNA vaccination against SARS-CoV-2. The patients were undergoing treatments such as anti-TNF (infliximab, adalimumab), anti-α4ß7 integrin (vedolizumab), anti-IL12/23 (ustekinumab) and azathioprine (purine analog). Their responses were compared to those of healthy individuals. Methods: In this prospective study, 81 IBD patients and 15 healthy controls were enrolled 2–4 months after receiving the third mRNA vaccination. This study measured IgG antibody levels against the SARS-CoV-2 spike protein’s receptor binding domain (RBD) and assessed potential neutralization capacity using a surrogate virus neutralization test (sVNT). Results: Overall, immunosuppressed IBD patients (without SARS-CoV-2 infection) exhibited significantly lower levels of anti-S-IgG (anti-RBD-IgG) and binding inhibition in the sVNT after the third vaccination compared to healthy controls. Patients under anti-TNF therapy showed notably reduced anti-S-IgG levels after the booster vaccination, in contrast to those receiving ustekinumab and azathioprine (p = 0.030, p = 0.031). IBD patients on anti-TNF therapy demonstrated significantly increased anti-S-IgG levels following prior SARS-CoV-2 infection (p = 0.020). Conclusion: Even after the third vaccination, immunosuppressed IBD patients exhibited diminished humoral immunity compared to healthy controls, especially those on anti-TNF therapy. Cases of penetrating infections led to considerably higher antibody levels in IBD patients under anti-TNF therapy compared to uninfected patients. Further investigation through prospective studies in immunosuppressed IBD patients is needed to determine whether this effectively safeguards against future infections or severe disease
    corecore