5 research outputs found

    Management of multidrug resistant Gram-negative bacilli infections in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations

    Get PDF
    Solid organ transplant (SOT) recipients are especially at risk of developing infections by multidrug resistant (MDR) Gram-negative bacilli (GNB), as they are frequently exposed to antibiotics and the healthcare setting, and are regulary subject to invasive procedures. Nevertheless, no recommendations concerning prevention and treatment are available. A panel of experts revised the available evidence; this document summarizes their recommendations: (1) it is important to characterize the isolate´s phenotypic and genotypic resistance profile; (2) overall, donor colonization should not constitute a contraindication to transplantation, although active infected kidney and lung grafts should be avoided; (3) recipient colonization is associated with an increased risk of infection, but is not a contraindication to transplantation; (4) different surgical prophylaxis regimens are not recommended for patients colonized with carbapenem-resistant GNB; (5) timely detection of carriers, contact isolation precautions, hand hygiene compliance and antibiotic control policies are important preventive measures; (6) there is not sufficient data to recommend intestinal decolonization; (7) colonized lung transplant recipients could benefit from prophylactic inhaled antibiotics, specially for Pseudomonas aeruginosa; (8) colonized SOT recipients should receive an empirical treatment which includes active antibiotics, and directed therapy should be adjusted according to susceptibility study results and the severity of the infection.J.T.S. holds a research contract from the Fundación para la Formación e Investigación de los Profesionales de la Salud de Extremadura (FundeSalud), Instituto de Salud Carlos III. M.F.R. holds a clinical research contract “Juan Rodés” (JR14/00036) from the Spanish Ministry of Economy and Competitiveness, Instituto de Salud Carlos III

    Characterization of Hypermutator Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis in Australia

    No full text
    Hypermutable Pseudomonas aeruginosa isolates (hypermutators) have been identified in patients with cystic fibrosis (CF) and are associated with reduced lung function. Hypermutators display a greatly increased mutation rate and an enhanced ability to become resistant to antibiotics during treatment. Their prevalence has been established among patients with CF, but it has not been determined for patients with CF in Australia. This study aimed to determine the prevalence of hypermutable P. aeruginosa isolates from adult patients with CF from a health care institution in Australia and to characterize the genetic diversity and antibiotic susceptibility of these isolates. A total of 59 P. aeruginosa clinical isolates from patients with CF were characterized. For all isolates, rifampin (RIF) mutation frequencies and susceptibility to a range of antibiotics were determined. Of the 59 isolates, 13 (22%) were hypermutable. Whole-genome sequences were determined for all hypermutable isolates. Core genome polymorphisms were used to assess genetic relatedness of the isolates, both to each other and to a sample of previously characterized P. aeruginosa strains. Phylogenetic analyses showed that the hypermutators were from divergent lineages and that hypermutator phenotype was mostly the result of mutations in mutL or, less commonly, in mutS. Hypermutable isolates also contained a range of mutations that are likely associated with adaptation of P. aeruginosa to the CF lung environment. Multidrug resistance was more prevalent in hypermutable than nonhypermutable isolates (38% versus 22%). This study revealed that hypermutable P. aeruginosa strains are common among isolates from patients with CF in Australia and are implicated in the emergence of antibiotic resistance
    corecore