10,980 research outputs found

    Jets, knots and tails in planetary nebulae: NGC 3918, K 1-2 and Wray 17-1

    Get PDF
    We analyze optical images and high-resolution, long-slit spectra of three planetary nebulae which possess collimated, low-ionization features. NGC 3918 is composed of an inner, spindle-shaped shell mildly inclined with respect to the plane of the sky. Departing from the polar regions of this shell, we find a two-sided jet expanding with velocities which increase linearly with distance from 50 to 100 km/s. The jet is probably coeval with the inner shell (with the age of approximately 1000 D yr, where D is the distance in kpc), suggesting that its formation should be ascribed to the same dynamical processes which also shaped the main nebula, and not to a more recent mass loss episode. We discuss the formation of the aspherical shell and jet in the light of current hydrodynamical and magnetohydrodynamical theories. K 1-2 is a planetary nebula with a close binary nucleus which shows a collimated string of knots embedded in a diffuse, elliptical shell. The knots expand with a velocity similar to that of the elliptical nebula (25 km/s), except for an extended tail located out of the main nebula, which linearly accelerates up to 45 km/s. We estimate an inclination on the line of the sight of 40 degres for the string of knots; once the orientation of the orbit is also determined, this information will allow us to test the prediction of current theories of the occurrence of polar jets from close binary systems. Wray 17-1 has a complex morphology, showing two pairs of low-ionization structures located in almost perpendicular directions from the central star, and embedded in a large, diffuse nebula. The two pairs show notable similarities and differences, and their origin is very puzzling.Comment: 20 pages plus 10 figures. ApJ recently published (ApJ 523, 721 (1999)

    Interpersonal Affect Improvement Strategies Questionnaire

    Get PDF
    This research outlines the development and validation of a new self-report measure to assess the tendency to use different interpersonal affect improvement strategies within the normal adult population (Interpersonal Affect Improvement Strategies Questionnaire; IAISQ). The scale is based on the interpersonal affect classification (Niven, Totterdell, & Holman, 2011) and accurately distinguishes between the two primary means suggested in that model: positive engagement and acceptance. Through four studies we tested the factor structure, reliability, content, criterion, and predictive validity of the scale

    The elementary excitations of the exactly solvable Russian doll BCS model of superconductivity

    Full text link
    The recently proposed Russian doll BCS model provides a simple example of a many body system whose renormalization group analysis reveals the existence of limit cycles in the running coupling constants of the model. The model was first studied using RG, mean field and numerical methods showing the Russian doll scaling of the spectrum, E(n) ~ E0 exp(-l n}, where l is the RG period. In this paper we use the recently discovered exact solution of this model to study the low energy spectrum. We find that, in addition to the standard quasiparticles, the electrons can bind into Cooper pairs that are different from those forming the condensate and with higher energy. These excited Cooper pairs can be described by a quantum number Q which appears in the Bethe ansatz equation and has a RG interpretation.Comment: 36 pages, 12 figure

    Sistemas de Comunicacion Inalambrica MIMO - OFDM

    Get PDF
    En este articulo tutorial, se presenta la fundamentacion basica de la tecnica demodulation multiportadora OFDM (>Orthogonal Frequency Division Multiplexing). Y serealiza una introduction a los sistemas de transmision MIMO (Multi-Input and MultiOutput). Adicionalmente, se muestra un resumen de las estructuras espaciales de estossistemas. Finalmente se realiza una revision, de la estructura obtenida al combinar laestructura MIMO y la tecnica de modulation OFDM

    Cooperation and Competition Shape Ecological Resistance During Periodic Spatial Disturbance of Engineered Bacteria

    Get PDF
    Cooperation is fundamental to the survival of many bacterial species. Previous studies have shown that spatial structure can both promote and suppress cooperation. Most environments where bacteria are found are periodically disturbed, which can affect the spatial structure of the population. Despite the important role that spatial disturbances play in maintaining ecological relationships, it remains unclear as to how periodic spatial disturbances affect bacteria dependent on cooperation for survival. Here, we use bacteria engineered with a strong Allee effect to investigate how the frequency of periodic spatial disturbances affects cooperation. We show that at intermediate frequencies of spatial disturbance, the ability of the bacterial population to cooperate is perturbed. A mathematical model demonstrates that periodic spatial disturbance leads to a tradeoff between accessing an autoinducer and accessing nutrients, which determines the ability of the bacteria to cooperate. Based on this relationship, we alter the ability of the bacteria to access an autoinducer. We show that increased access to an autoinducer can enhance cooperation, but can also reduce ecological resistance, defined as the ability of a population to resist changes due to disturbance. Our results may have implications in maintaining stability of microbial communities and in the treatment of infectious diseases

    Restrictive ID policies: implications for health equity

    Get PDF
    We wish to thank Synod Community Services for their critical work to develop, support, and implement a local government-issued ID in Washtenaw County, MI. We also thank Yousef Rabhi of the Michigan House of Representatives and Janelle Fa'aola of the Washtenaw ID Task Force, Lawrence Kestenbaum of the Washtenaw County Clerk's Office, Sherriff Jerry Clayton of the Washtenaw County Sherriff's Office, and the Washtenaw ID Task Force for their tireless commitment to developing and supporting the successful implementation of the Washtenaw ID. Additionally, we thank Vicenta Vargas and Skye Hillier for their contributions to the Washtenaw ID evaluation. We thank the Curtis Center for Research and Evaluation at the University of Michigan School of Social Work, the National Center for Institutional Diversity at the University of Michigan, and the University of California-Irvine Department of Chicano/Latino Studies and Program in Public Health for their support of the Washtenaw ID community-academic research partnership. Finally, we thank the reviewers for their helpful comments on earlier drafts of this manuscript. (Curtis Center for Research and Evaluation at the University of Michigan School of Social Work; National Center for Institutional Diversity at the University of Michigan; University of California-Irvine Department of Chicano/Latino Studies; Program in Public Health)https://link.springer.com/content/pdf/10.1007/s10903-017-0579-3.pdfPublished versio

    International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB)

    Get PDF
    Abstract Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the use of beta-hydroxy-beta-methylbutyrate (HMB) as a nutritional supplement. The ISSN has concluded the following. 1. HMB can be used to enhance recovery by attenuating exercise induced skeletal muscle damage in trained and untrained populations. 2. If consuming HMB, an athlete will benefit from consuming the supplement in close proximity to their workout. 3. HMB appears to be most effective when consumed for 2 weeks prior to an exercise bout. 4. Thirty-eight mg·kg·BM-1 daily of HMB has been demonstrated to enhance skeletal muscle hypertrophy, strength, and power in untrained and trained populations when the appropriate exercise prescription is utilized. 5. Currently, two forms of HMB have been used: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA may increase plasma absorption and retention of HMB to a greater extent than HMB-CA. However, research with HMB-FA is in its infancy, and there is not enough research to support whether one form is superior. 6. HMB has been demonstrated to increase LBM and functionality in elderly, sedentary populations. 7. HMB ingestion in conjunction with a structured exercise program may result in greater declines in fat mass (FM). 8. HMB’s mechanisms of action include an inhibition and increase of proteolysis and protein synthesis, respectively. 9. Chronic consumption of HMB is safe in both young and old populations

    GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy

    Get PDF
    We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the OSIRIS instrument, enabling differential specrophotometric transit lightcurves capable of measuring the exoplanet's transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300{\AA}. We find that sub-mmag level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ~1000{\AA} regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimising the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50{\AA} bandpass centred on the Na I doublet, with absorption depths of Delta(R_pl/R_star)^2=0.049+/-0.017 % using the R500R grism and 0.047+/-0.011 % using the R500B grism (combined 5.2-sigma significance from both transits). The sodium feature is unresolved in our low-resolution spectra, with detailed modelling also likely ruling out significant line-wing absorption over an ~800{\AA} region surrounding the doublet. Combined with narrowband photometric measurements, XO-2b is the first hot Jupiter with evidence for both sodium and potassium present in the planet's atmosphere.Comment: 9 pages, 10 figures, 1 table, accepted for publication in MNRA

    Gauge Theory of Composite Fermions: Particle-Flux Separation in Quantum Hall Systems

    Full text link
    Fractionalization phenomenon of electrons in quantum Hall states is studied in terms of U(1) gauge theory. We focus on the Chern-Simons(CS) fermion description of the quantum Hall effect(QHE) at the filling factor ν=p/(2pq±1)\nu=p/(2pq\pm 1), and show that the successful composite-fermions(CF) theory of Jain acquires a solid theoretical basis, which we call particle-flux separation(PFS). PFS can be studied efficiently by a gauge theory and characterized as a deconfinement phenomenon in the corresponding gauge dynamics. The PFS takes place at low temperatures, TTPFST \leq T_{\rm PFS}, where each electron or CS fermion splinters off into two quasiparticles, a fermionic chargeon and a bosonic fluxon. The chargeon is nothing but Jain's CF, and the fluxon carries 2q2q units of CS fluxes. At sufficiently low temperatures TTBC(<TPFS)T \leq T_{\rm BC} (< T_{\rm PFS}), fluxons Bose-condense uniformly and (partly) cancel the external magnetic field, producing the correlation holes. This partial cancellation validates the mean-field theory in Jain's CF approach. FQHE takes place at T<TBCT < T_{\rm BC} as a joint effect of (i) integer QHE of chargeons under the residual field ΔB\Delta B and (ii) Bose condensation of fluxons. We calculate the phase-transition temperature TPFST_{\rm PFS} and the CF mass. PFS is a counterpart of the charge-spin separation in the t-J model of high-TcT_{\rm c} cuprates in which each electron dissociates into holon and spinon. Quasiexcitations and resistivity in the PFS state are also studied. The resistivity is just the sum of contributions of chargeons and fluxons, and ρxx\rho_{xx} changes its behavior at T=TPFST = T_{\rm PFS}, reflecting the change of quasiparticles from chargeons and fluxons at T<TPFST < T_{\rm PFS} to electrons at TPFS<TT_{\rm PFS} < T.Comment: 18 pages, 7 figure
    corecore