183 research outputs found

    A Triple Protostar System Formed via Fragmentation of a Gravitationally Unstable Disk

    Get PDF
    Binary and multiple star systems are a frequent outcome of the star formation process, and as a result, almost half of all sun-like stars have at least one companion star. Theoretical studies indicate that there are two main pathways that can operate concurrently to form binary/multiple star systems: large scale fragmentation of turbulent gas cores and filaments or smaller scale fragmentation of a massive protostellar disk due to gravitational instability. Observational evidence for turbulent fragmentation on scales of >>1000~AU has recently emerged. Previous evidence for disk fragmentation was limited to inferences based on the separations of more-evolved pre-main sequence and protostellar multiple systems. The triple protostar system L1448 IRS3B is an ideal candidate to search for evidence of disk fragmentation. L1448 IRS3B is in an early phase of the star formation process, likely less than 150,000 years in age, and all protostars in the system are separated by <<200~AU. Here we report observations of dust and molecular gas emission that reveal a disk with spiral structure surrounding the three protostars. Two protostars near the center of the disk are separated by 61 AU, and a tertiary protostar is coincident with a spiral arm in the outer disk at a 183 AU separation. The inferred mass of the central pair of protostellar objects is \sim1 Msun_{sun}, while the disk surrounding the three protostars has a total mass of \sim0.30 M_{\sun}. The tertiary protostar itself has a minimum mass of \sim0.085 Msun_{sun}. We demonstrate that the disk around L1448 IRS3B appears susceptible to disk fragmentation at radii between 150~AU and 320~AU, overlapping with the location of the tertiary protostar. This is consistent with models for a protostellar disk that has recently undergone gravitational instability, spawning one or two companion stars.Comment: Published in Nature on Oct. 27th. 24 pages, 8 figure

    “We are women and men now”: Intimate spaces and coping labour for Syrian women refugees in Jordan

    Get PDF
    War affects women from the bedroom to the battlefield, but for most women war is experienced within intimate spaces. Intimate spaces are rarely the focus of mainstream academic research or media reporting; thus women\u27s experiences with war and displacement are often concealed. Building from literature in feminist geopolitics that helps focus our attention toward everyday and intimate geopolitics, I conducted in‐depth interviews with Syrian women refugees in Jordan in order to examine how they are coping. Of the many ways that they\u27ve learned to cope, these women asserted that earning an income and adjusting to altered gender performances and relations have been both dire and formative. Many Syrian women refugees have become income providers for the first time in their lives. Some women have become their families’ sole providers, and other women are now heads of households as well. Bringing literature from feminist geography, transnational and migration studies, and critical home studies together with feminist geopolitics, I offer the ideas of coping and coping labour as a framework to examine the intimate spaces of displacement. I highlight that paid work is understudied within feminist geopolitics, but such a focus renders important insights into how gender shapes experiences of displacement and how displacement is reshaping gendered relations. In this paper, I show that in the intimate spaces of displacement women have taken on traditionally masculine practices, but while their gendered performances shift, they are simultaneously entrenched as the ideals of appropriate feminine and masculine performances are recreated. Though these multiple gendered performances are creating numerous demands and challenges for Syrian women refugees, these women are also experiencing an increased sense of strength, confidence and respect as a result of their shifting performances

    Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    Get PDF
    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage

    The potential utility of B cell-directed biologic therapy in autoimmune diseases

    Get PDF
    Increasing awareness of the importance of aberrant B cell regulation in autoimmunity has driven the clinical development of novel B cell-directed biologic therapies with the potential to treat a range of autoimmune disorders. The first of these drugs—rituximab, a chimeric monoclonal antibody against the B cell-specific surface marker CD20—was recently approved for treating rheumatoid arthritis in patients with an inadequate response to other biologic therapies. The aim of this review is to discuss the potential use of rituximab in the management of other autoimmune disorders. Results from early phase clinical trials indicate that rituximab may provide clinical benefit in systemic lupus erythematosus, Sjögren’s syndrome, vasculitis, and thrombocytopenic purpura. Numerous case reports and several small pilot studies have also been published reporting the use of rituximab in conditions such as myositis, antiphospholipid syndrome, Still’s disease, and multiple sclerosis. In general, the results from these preliminary studies encourage further testing of rituximab therapy in formalized clinical trials. Based on results published to date, it is concluded that rituximab, together with other B cell-directed therapies currently under clinical development, is likely to provide an important new treatment option for a number of these difficult-to-treat autoimmune disorders

    Abundance of the Quorum-Sensing Factor Ax21 in Four Strains of Stenotrophomonas maltophilia Correlates with Mortality Rate in a New Zebrafish Model of Infection

    Get PDF
    Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence. Little is known about its pathogenesis and the genomic diversity exhibited by clinical isolates complicates the study of pathogenicity and virulence factors. Here, we present a strategy to identify such factors in new clinical isolates of S. maltophilia, incorporating an adult-zebrafish model of S. maltophilia infection to evaluate relative virulence coupled to 2D difference gel electrophoresis to explore underlying differences in protein expression. In this study we report upon three recent clinical isolates and use the collection strain ATCC13637 as a reference. The adult-zebrafish model shows discrimination capacity, i.e. from very low to very high mortality rates, with clinical symptoms very similar to those observed in natural S. maltophilia infections in fish. Strain virulence correlates with resistance to human serum, in agreement with previous studies in mouse and rat and therefore supporting zebrafish as a replacement model. Despite its clinical origin, the collection strain ATCC13637 showed obvious signs of attenuation in zebrafish, with null mortality. Multilocus-sequence-typing analysis revealed that the most virulent strains, UV74 and M30, exhibit the strongest genetic similitude. Differential proteomic analysis led to the identification of 38 proteins with significantly different abundance in the three clinical strains relative to the reference strain. Orthologs of several of these proteins have been already reported to have a role in pathogenesis, virulence or resistance mechanisms thus supporting our strategy. Proof of concept is further provided by protein Ax21, whose abundance is shown here to be directly proportional to mortality in the zebrafish infection model. Indeed, recent studies have demonstrated that this protein is a quorum-sensing-related virulence factor

    Beyond humanization and de-immunization: tolerization as a method for reducing the immunogenicity of biologics

    Get PDF
    Immune responses to some monoclonal antibodies (mAbs) and biologic proteins interfere with their efficacy due to the development of anti-drug antibodies (ADA). In the case of mAbs, most ADA target ‘foreign’ sequences present in the complementarity determining regions (CDRs). Humanization of the mAb sequence is one approach that has been used to render biologics less foreign to the human immune system. However, fully human mAbs can also drive immunogenicity. De-immunization (removing epitopes) has been used to reduce biologic protein immunogenicity. Here, we discuss a third approach to reducing the immunogenicity of biologics: introduction of Treg epitopes that stimulate Treg function and induce tolerance to the biologic protein. Supplementing humanization (replacing xenosequences with human) and de-immunization (reducing T effector epitopes) with tolerization (introducing Treg epitopes) where feasible, as a means of improving biologics ‘quality by design’, may lead to the development of ever more clinically effective, but less immunogenic, biologics

    Change & Maintaining Change in School Cafeterias: Economic and Behavioral-Economic Approaches to Increasing Fruit and Vegetable Consumption

    Get PDF
    Developing a daily habit of consuming fruits and vegetables (FV) in children is an important public-health goal. Eating habits acquired in childhood are predictive of adolescent and adult dietary patterns. Thus, healthy eating patterns developed early in life can protect the individual against a number of costly health deficits and may reduce the prevalence of obesity. At present, children in the United States (US) under-consume FV despite having access to them through the National School Lunch Program. Because access is an obstacle to developing healthy eating habits, particularly in low-income households, targeting children’s FV consumption in schools has the advantage of near-universal FV availability among more than 30 million US children. This chapter reviews economic and behavioral-economic approaches to increasing FV consumption in schools. Inclusion criteria include objective measurement of FV consumption (e.g., plate waste measures) and minimal demand characteristics. Simple but effective interventions include (a) increasing the variety of vegetables served, (b) serving sliced instead of whole fruits, (c) scheduling lunch after recess, and (d) giving children at least 25 minutes to eat. Improving the taste of FV and short-term incentivizing consumption of gradually increasing amounts can produce large increases in consumption of these foods. Low-cost game-based incentive program may increase the practicality of the latter strategy

    Structural/mechanistic insights into the efficacy of non-classical β-lactamase inhibitors against extensively drug resistant Stenotrophomonas maltophilia clinical isolates

    Get PDF
    Clavulanic acid and avibactam are clinically deployed serine β-lactamase inhibitors, important as a defence against antibacterial resistance. Bicyclic boronates are recently discovered inhibitors of serine and some metallo β-lactamases. Here we show that avibactam and a bicyclic boronate inhibit L2 (serine β-lactamase) but not L1 (metallo β-lactamase) from the extensively drug resistant human pathogen Stenotrophomonas maltophilia. X-ray crystallography revealed that both inhibitors bind L2 by covalent attachment to the nucleophilic serine. Both inhibitors reverse ceftazidime resistance in S. maltophilia because, unlike clavulanic acid, they do not induce L1 production. Ceftazidime/inhibitor resistant mutants hyper-produce L1, but retain aztreonam/inhibitor susceptibility because aztreonam is not an L1 substrate. Importantly, avibactam, but not the bicyclic boronate is deactivated by L1 at a low rate; the utility of avibactam might be compromised by mutations that increase this deactivation rate. These data rationalize the observed clinical efficacy of ceftazidime/avibactam plus aztreonam as combination therapy for S. maltophilia infections and confirm that aztreonam-like β-lactams plus non-classical β-lactamase inhibitors, particularly avibactam-like and bicyclic boronate compounds, have potential for treating infections caused by this most intractable of drug resistant pathogens
    corecore