6,663 research outputs found

    Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review

    Full text link
    © 2019 Elsevier B.V. Water treatment sludge (WTS) management is a growing global problem for water treatment plants (WTPs) and governments. Considering the scarcity of raw materials in many parts of the planet and unique properties of WTS, extensive research has been conducted on the application of WTS in the production of construction materials such as roof tiles, bricks, lightweight aggregates, cement, concrete and geopolymers. This paper critically reviews the progress in the application of WTS in construction materials, by synthesizing results from recent studies. Research findings have revealed that incorporation of ≤10% alum-based sludge in ceramic bricks is satisfactory with a small reduction of mechanical performance. Using the iron-based sludge, the bricks presented better mechanical strength than the reference clay-bricks. Concerning WTS application in concrete, 5% replacement of cement or sand by WTS was considered as the ideal value for the application in a variety of structural and non-structural concrete without adverse effect on concrete mechanical performance. Furthermore, this paper discusses sludge-amended concrete in terms of durability, potential leaching of toxic elements and cost, and suggests topics for future research on the sustainable management of WTS

    Current–Voltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope

    Get PDF
    In this paper, we focus on current–voltage (I–V) characteristics in several kinds of quasi-one-dimensional (quasi-1D) nanofibers to investigate their electronic transport properties covering a wide temperature range from 300 down to 2 K. Since the complex structures composed of ordered conductive regions in series with disordered barriers in conducting polymer nanotubes/wires and CdS nanowires, all measured nonlinearI–Vcharacteristics show temperature and field-dependent features and are well fitted to the extended fluctuation-induced tunneling and thermal excitation model (Kaiser expression). However, we find that there are surprisingly similar deviations emerged between theI–Vdata and fitting curves at the low bias voltages and low temperatures, which can be possibly ascribed to the electron–electron interaction in such quasi-1D systems with inhomogeneous nanostructures

    Quick and sensitive determination of gene expression of fatty acid synthase in vitro by using real-time polymerase chain reaction amplification (PCR)

    Get PDF
    Obesity results from an imbalance between energy intake and energy expenditure, which leads to a pathological accumulation of adipose tissue, but the underlying mechanism at gene level, is far from being elucidated. The objective of this study was to investigate the correlation between mRNA express from fatty acid synthase (FAS) with a different glucose level in primary adipocytes by real-time polymerase chain reaction amplification (PCR), which can aid in the understanding of the mechanism of obesity in vitro. By using the following formula, this study was able to quantify the mRNA expression of FAS of unknown samples: Y = -3.156X + 41.21 (Y = threshold cycle, X = log starting quantity). The high concentrations of glucose group significantly improved the mRNA expression of FAS (P < 0.01) rather than 0.25 and 0% concentrations of glucose. These results provide significant data that confirm an association between different glucose level and FAS expression in preadipocytes. The glucose concentration of the high group substantially augmented the mRNA expression of FAS.Key words: Expression, fatty acid synthase, lipid deposition, real-time polymerase chain reaction amplification (PCR)

    Current–Voltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope

    Get PDF
    In this paper, we focus on current–voltage (I–V) characteristics in several kinds of quasi-one-dimensional (quasi-1D) nanofibers to investigate their electronic transport properties covering a wide temperature range from 300 down to 2 K. Since the complex structures composed of ordered conductive regions in series with disordered barriers in conducting polymer nanotubes/wires and CdS nanowires, all measured nonlinearI–Vcharacteristics show temperature and field-dependent features and are well fitted to the extended fluctuation-induced tunneling and thermal excitation model (Kaiser expression). However, we find that there are surprisingly similar deviations emerged between theI–Vdata and fitting curves at the low bias voltages and low temperatures, which can be possibly ascribed to the electron–electron interaction in such quasi-1D systems with inhomogeneous nanostructures

    Electrical Conductivity Studies on Individual Conjugated Polymer Nanowires: Two-Probe and Four-Probe Results

    Get PDF
    <p>Abstract</p> <p>Two- and four-probe electrical measurements on individual conjugated polymer nanowires with different diameters ranging from 20 to 190 nm have been performed to study their conductivity and nanocontact resistance. The two-probe results reveal that all the measured polymer nanowires with different diameters are semiconducting. However, the four-probe results show that the measured polymer nanowires with diameters of 190, 95&#8211;100, 35&#8211;40 and 20&#8211;25 nm are lying in the insulating, critical, metallic and insulting regimes of metal&#8211;insulator transition, respectively. The 35&#8211;40 nm nanowire displays a metal&#8211;insulator transition at around 35 K. In addition, it was found that the nanocontact resistance is in the magnitude of 10<sup>4</sup>&#937; at room temperature, which is comparable to the intrinsic resistance of the nanowires. These results demonstrate that four-probe electrical measurement is necessary to explore the intrinsic electronic transport properties of isolated nanowires, especially in the case of metallic nanowires, because the metallic nature of the measured nanowires may be coved by the nanocontact resistance that cannot be excluded by a two-probe technique.</p

    Understanding why primary care doctors leave direct patient care: a systematic review of qualitative research

    Get PDF
    This is the final version. Available on open access from BMJ Publishing Group via the DOI in this recordData availability statement: All data relevant to the study are included in the article or uploaded as supplementary information. No additional data available.Background UK general practitioners (GPs) are leaving direct patient care in significant numbers. We undertook a systematic review of qualitative research to identify factors affecting GPs’ leaving behaviour in the workforce as part of a wider mixed methods study (ReGROUP). Objective To identify factors that affect GPs’ decisions to leave direct patient care. Methods Qualitative interview-based studies were identified and their quality was assessed. A thematic analysis was performed and an explanatory model was constructed providing an overview of factors affecting UK GPs. Non-UK studies were considered separately. Results Six UK interview-based studies and one Australian interview-based study were identified. Three central dynamics that are key to understanding UK GP leaving behaviour were identified: factors associated with low job satisfaction, high job satisfaction and those linked to the doctor–patient relationship. The importance of contextual influence on job satisfaction emerged. GPs with high job satisfaction described feeling supported by good practice relationships, while GPs with poor job satisfaction described feeling overworked and unsupported with negatively impacted doctor–patient relationships. Conclusions Many GPs report that job satisfaction directly relates to the quality of the doctor–patient relationship. Combined with changing relationships with patients and interfaces with secondary care, and the gradual sense of loss of autonomy within the workplace, many GPs report a reduction in job satisfaction. Once job satisfaction has become negatively impacted, the combined pressure of increased patient demand and workload, together with other stress factors, has left many feeling unsupported and vulnerable to burn-out and ill health, and ultimately to the decision to leave general practice

    Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016

    Get PDF
    Nitryl chloride (ClNO2) is a radical reservoir species that releases chlorine radicals upon photolysis. An integrated analysis of the impact of ClNO2 on regional photochemistry in the Seoul metropolitan area (SMA) during the Korea-United States Air Quality Study (KORUS-AQ) 2016 field campaign is presented. Comprehensive multiplatform observations were conducted aboard the NASA DC-8 and at two ground sites (Olympic Park, OP; Taehwa Research Forest, TRF), representing an urbanized area and a forested suburban region, respectively. Positive correlations between daytime Cl2 and ClNO2 were observed at both sites, the slope of which was dependent on O3 levels. The possible mechanisms are explored through box model simulations constrained with observations. The overall diurnal variations in ClNO2 at both sites appeared similar but the nighttime variations were systematically different. For about half of the observation days at the OP site the level of ClNO2 increased at sunset but rapidly decreased at around midnight. On the other hand, high levels were observed throughout the night at the TRF site. Significant levels of ClNO2 were observed at both sites for 4-5 h after sunrise. Airborne observations, box model calculations, and back-trajectory analysis consistently show that these high levels of ClNO2 in the morning are likely from vertical or horizontal transport of air masses from the west. Box model results show that chlorine-radical-initiated chemistry can impact the regional photochemistry by elevating net chemical production rates of ozone by 25% in the morning

    Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us

    Full text link
    Supernova remnants (SNRs) arise from the interaction between the ejecta of a supernova (SN) explosion and the surrounding circumstellar and interstellar medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However, to understand SNRs as a whole, large samples of SNRs must be assembled and studied. Here, we describe the radio, optical, and X-ray techniques which have been used to identify and characterize almost 300 Galactic SNRs and more than 1200 extragalactic SNRs. We then discuss which types of SNRs are being found and which are not. We examine the degree to which the luminosity functions, surface-brightness distributions and multi-wavelength comparisons of the samples can be interpreted to determine the class properties of SNRs and describe efforts to establish the type of SN explosion associated with a SNR. We conclude that in order to better understand the class properties of SNRs, it is more important to study (and obtain additional data on) the SNRs in galaxies with extant samples at multiple wavelength bands than it is to obtain samples of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin. Final version available at https://doi.org/10.1007/978-3-319-20794-0_90-

    How early can myocardial iron overload occur in Beta thalassemia major?

    Get PDF
    BACKGROUND: Myocardial siderosis is the most common cause of death in patients with beta thalassemia major(TM). This study aimed at investigating the occurrence, prevalence and severity of cardiac iron overload in a young Chinese population with beta TM. METHODS AND RESULTS: We analyzed T2* cardiac magnetic resonance (CMR), left ventricular ejection fraction (LVEF) and serum ferritin (SF) in 201 beta TM patients. The median age was 9 years old. Patients received an average of 13 units of blood per year. The median SF level was 4536 ng/ml and 165 patients (82.1%) had SF>2500 ng/ml. Myocardial iron overload was detected in 68 patients (33.8%) and severe myocardial iron overload was detected in 26 patients (12.6%). Twenty-two patients ≤10 years old had myocardial iron overload, three of whom were only 6 years old. No myocardial iron overload was detected under the age of 6 years. Median LVEF was 64% (measured by CMR in 175 patients). Five of 6 patients with a LVEF<56% and 8 of 10 patients with cardiac disease had myocardial iron overload. CONCLUSIONS: The TM patients under follow-up at this regional centre in China patients are younger than other reported cohorts, more poorly-chelated, and have a high burden of iron overload. Myocardial siderosis occurred in patients younger than previously reported, and was strongly associated with impaired LVEF and cardiac disease. For such poorly-chelated TM patients, our data shows that the first assessment of cardiac T2* should be performed as early as 6 years old
    • …
    corecore