16 research outputs found

    A combined experimental and computational approach to investigate emergent network dynamics based on large-scale neuronal recordings

    Get PDF
    Sviluppo di un approccio integrato computazionale-sperimentale per lo studio di reti neuronali mediante registrazioni elettrofisiologich

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    network_model_NEURON

    No full text
    Package containing Python and NEURON code used for simulations. Remember to compile .mod file . The code requires a community detection module available at https://bitbucket.org/taynaud/python-louvain. Up to date versions can be found at https://github.com/dlonardoni/Cell-Culture-Model

    From dynamics to links: a sparse reconstruction of the topology of a neural network

    No full text
    One major challenge in neuroscience is the identification of interrelations between signals reflecting neural activity and how information processing occurs in the neural circuits. At the cellular and molecular level, mechanisms of signal transduction have been studied intensively and a better knowledge and understanding of some basic processes of information handling by neurons has been achieved. In contrast, little is known about the organization and function of complex neuronal networks. Experimental methods are now available to simultaneously monitor electrical activity of a large number of neurons in real time. Then, the qualitative and quantitative analysis of the spiking activity of individual neurons is a very valuable tool for the study of the dynamics and architecture of the neural networks. Such activity is not due to the sole intrinsic properties of the individual neural cells but it is mostly the consequence of the direct influence of other neurons. The deduction of the effective connectivity between neurons, whose experimental spike trains are observed, is of crucial importance in neuroscience: first for the correct interpretation of the electro-physiological activity of the involved neurons and neural networks, and, for correctly relating the electrophysiological activity to the functional tasks accomplished by the network. In this work, we propose a novel method for the identification of connectivity of neural networks using recorded voltages. Our approach is based on the assumption that the network has a topology with sparse connections. After a brief description of our method, we will report the performances and compare it to the cross-correlation computed on the spike trains, which represents a gold standard method in the field

    Investigating the effects of mechanical stimulation on retinal ganglion cell spontaneous spiking activity

    No full text
    Mechanical forces are increasingly recognized as major regulators of several physiological processes at both the molecular and cellular level; therefore, a deep understanding of the sensing of these forces and their conversion into electrical signals are essential for studying the mechanosensitive properties of soft biological tissues. To contribute to this field, we present a dual-purpose device able to mechanically stimulate retinal tissue and to record the spiking activity of retinal ganglion cells (RGCs). This new instrument relies on combining ferrule-top micro-indentation, which provides local measurements of viscoelasticity, with high-density multi-electrode array (HD-MEAs) to simultaneously record the spontaneous activity of the retina. In this paper, we introduce this instrument, describe its technical characteristics, and present a proof-of-concept experiment that shows how RGC spiking activity of explanted mice retinas respond to mechanical micro-stimulations of their photoreceptor layer. The data suggest that, under specific conditions of indentation, the retina perceive the mechanical stimulation as modulation of the visual input, besides the longer time-scale of activation, and the increase in spiking activity is not only localized under the indentation probe, but it propagates across the retinal tissue

    Data from: Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks

    No full text
    Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities) that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity

    Effects of synaptic transmission on network bursts.

    No full text
    <p>(A) Mean firing rate (MFR) as a function of the decreasing AMPA conductance in AG-networks (i.e., networks with AMPA and GABA conductance, dashed lines) and AGN-networks (i.e., networks with AMPA, GABA and NMDA conductance, solid lines). (B) The reduction in AMPA conductance decreases the mean bursting rate (MBR) and increases the number of asynchronous spikes (random spikes). (C) The reduction in AMPA conductance determines a shift in the ISI distribution, from a multi-peak (0% AMPA reduction) to a single-peak distribution (30% AMPA reduction). (D) The model predicts changes in the activity parameters (MFR, MBR, MFIB, MBD), reproducing recordings under pharmacological blockade of inhibition with bicuculline (BIC, 30 μM, p-values: 0.052, 0.473, 0.189, and 0.449, respectively; independent t-tests, n = 5 simulations, n = 4 recordings). (E) AG-networks show single NBs, while AGN-networks show superbursts, both in recordings (n = 3, gray) and in simulations (n = 10, blue). (F) In AGN-networks, (black, n = 10), the ISI distribution has three peaks: P1 relates to the firing within an NB, P2 to the firing between consecutive NBs, and the peak highlighted by a solid arrow (at approximately 100 ms) to the time intervals across consecutive NBs of a superburst. Blockade of NMDA (AG-network) removes the latter peak from the distribution (red, n = 10). (G) Exemplary simulated trace of the membrane potential of a single cell during a superburst and total conductance of AMPA (black) and NMDA (orange) for the same neuron. Note that during the first NB, the NMDA conductance is negligible compared with that of AMPA.</p

    Analysis of the structural connectivity motifs in the functional communities of the network.

    No full text
    <p>Clustering coefficient of structural motifs tested (up to six nodes and isomorphic subgraphs) against the relative abundance of structural motifs in fCOMs and the null-models: rndCOMs (A), rCOMs (B) and sCOMs (C) (see <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005672#sec009" target="_blank">Materials and Methods</a> section). Red dots mark the structural motifs occurring with a significant frequency difference (p-value<0.05, t-test) for all null-models. Regression lines visualize the trend (where <i>a</i> and <i>p</i> denote the value of the slope and the p-value respectively) among all tested motifs (gray) and the statistically different ones (red). (D) Illustration of overabundant (positive index) and under-represented (negative indexes) structural motifs found in fCOMs with respect to the null models depicted in A-C. As highlighted by the red lines, a high clustering coefficient characterizes the structural motifs that are significantly over-expressed in fCOMs; conversely, significantly under-represented structural motifs resulted in low clustering coefficients (0.56±0.30 vs. 0.19±0.27, respectively).</p
    corecore