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An introduction to the motivations, 

implementation and achievements of my 

PhD  
 

 

Motivations of this research 
 

Progress in neuroscience is tightly related to the available techniques used to functionally and 

structurally investigate neuronal systems. According to the neuron doctrine1, which started to 

emerge following the pioneering works of Santiago Ramón y Cajal, a single neuron represents the 

foundation of the nervous system. Consequently, the conceptual basis of neuroscience embraced 

this assumption for several decades. Nowadays, with the advent of multi-neuronal recording 

approaches and advances of several theoretical works have put forward the concept that 

assemblies and communities of neurons2, rather than individual neurons, are at the core of the 

implementation and execution of brain functions. In this view, these assemblies generate 

emergent and complex spiking patterns that regulate physiological functions3.  

It is nowadays clear that brain functions emerge from complex dynamical interactions that 

cannot be restricted to the scale of neuronal assemblies, but rather involve an even wider range of 

spatial and temporal scales in the whole brain than previously thought. High-resolution 

microscopy, biomolecular tools, and functional imaging capabilities enabled observations at 

different scales, ranging from the quantification of molecules within individual cells up to 

characterizations of behavioral related activity changes in the whole brain. The different, yet 

interrelated signaling networks of genes, molecules, cells and circuits co-exist, but despite the 

enormous and constantly increasing amount of scale-specific self-standing information that can 

nowadays be acquired, bridging these multiple functional scales together remains challenging. 

Relating macroscopic effects, such as behaviors, to operating principles at lower scales, represents 

one among the major current challenges of modern neuroscience4.  

In particular, by zooming in neuronal systems, one of the intriguing features that it emerges is 

the heterogeneous composition of their functional networks at different scales. This intrinsic large 

variability in function and in structure, at cellular and subcellular scales, is apparently in 

contradiction with the robustness of neuronal networks to execute the tasks they are devoted to. 

However, as it was proposed, the heterogeneity itself might be a valuable mechanism to increase 

the reliability and robustness of a neuronal system. For instance, cellular heterogeneity properties 

might be at the core of cell assemblies operating through population coding. Thus, heterogeneity 

is more likely not the consequence of a biology’s imprecision, rather a fundamental approach 

adopted by nature. In line with this view, computer simulations also showed that functionally 
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similar networks could be obtained with many different sets of microcircuits, as long as there is an 

appropriate set of well-balanced network properties that are maintained. Therefore, these 

considerations suggest that in addition to the need of investigating the function of different 

neuronal types and their contribution to the outputs of different brain circuits, advancing in the 

study and in the comprehension of the fundamental properties of neuronal networks is a 

fundamental knowledge that we need to acquire in order to understand better how brain circuits 

operate and might dysfunction in disease.  

An approach to study large neuronal assemblies and brain circuits at multiple scales enabled 

by the computational power available nowadays consists in combining experimental measures 

performed using modern high-resolution technologies and computational modeling. In my thesis, I 

have followed and attempted to develop this data-driven approach further. In particular, I focused 

my research on developing computational tools and I have applied them to specific studies aiming 

at i) contributing in disentangling how spontaneous coordinated spiking patterns in neuronal 

networks in-vitro are generated as a consequence of network interactions and ii) how horizontal 

pan-retinal interactions might contribute in encoding visual sensory information in the retina. To 

do so, I have developed computational models and analysis tools based on an emerging 

generation of multi-electrode arrays that provides high dimensional recordings of neuronal activity 

from thousands of spiking neurons in individual brain circuits and networks. As it will be described 

in the following paragraphs, the results obtained by focusing on the specific questions addressed 

in my work support the view of the important role played by network interactions and 

communities of neurons in these two neuronal systems, to initiate coordinated spiking activity and 

to process visual information, respectively.  

Roadmap of the research activities developed in this thesis 
 

Exploring network-wide interactions is undoubtedly a still very challenging and intriguing topic 

that I attempted to address during my Ph.D. using computational and mathematical methods for 

analysis and modeling in combination with experimental datasets acquired with my colleagues at 

the IIT-NetS3 laboratory and by using high-resolution multi-electrode arrays based on CMOS 

technology (CMOS-MEAs). In particular, the overall aim of my Ph.D. was to adopt this synergic 

computational and experimental approach to investigate specific functional effects emerging from 

network interactions in two experimental models, which are hippocampal neuronal cultures and 

the mice retinal circuit. However, it has to be noted that given the only recent adoption of the 

CMOS-MEA technology to investigate the retinal circuit, my contribution to the study of this brain 

circuit involved an important effort on the development and validation of the data analysis tools. 

Thus, during this thesis, I could not implement a data-driven computational model of this circuit as 

I could instead do for in-vitro neuronal networks. However, the work spent on developing these 

tools and in analyzing experimental data was crucial to debug our experimental setup. Indeed, I 

found and fixed several misbehaviors of the visual stimulator that had an important impact on the 

results of our experiments.  

Briefly, in the first part of my Ph.D. I aimed at exploiting computational modeling and 

experimental data to study the generation of coordinated spontaneous spiking activity in 
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developing neuronal networks. I have focused on primary hippocampal neuronal cultures, as a 

reduced model to investigate network interactions. Importantly, these networks can be recorded 

almost entirely at the scale of single-neurons with CMOS-MEAs and, currently, they are the only 

mammalian neuronal system that can be monitored with such a low percentage of single neurons 

undersampling. Further, neuronal cultures represent an intriguing system from the computational 

point of view. Primary embryonic neurons grown in culture form an intricate network of 

connections that can spontaneously exhibit stereotyped network-wide activations and sparse 

spiking activity. Although no specific physiological circuit is associated with their spontaneous 

network dynamic, these neuronal systems allow investigating the critical elements that sustain 

and trigger these emergent network events. In my research, I developed a computational network 

model and I extensively validated the model against experimental recordings that only a high 

spatial and temporal resolution recording platform could provide. The strong expertise on CMOS-

MEAs and in recording activity from neuronal cell cultures available at the NetS3 laboratory 

supported my work since its early phase and provided the necessary elements for the 

computational model validation and its application. Personally, given my mathematical 

background, I found the intrinsic complexity of these neuronal systems a fascinating and engaging 

topic. 

Starting from the second year of my Ph.D., I implemented the second part of my work by 

focusing on a physiological relevant sensory brain circuit, the retina. From this point of view, the 

retina is an ideal input/output neuronal system to study how networks of neurons organized in 

different layers convert visual inputs into pre-processed spike-trains for down-stream cortical 

circuits. In particular, by taking advantage of the large recording area of CMOS-MEAs that allow 

pan-retinal recordings from several thousand of retinal ganglion cells from each individual and 

explanted retina, I aimed at investigating the effects of long-range interaction in the processing of 

visual information. In particular, I contributed to developing and validating the experimental and 

data analysis platform. Then, I explored the effects of spatially confined visual stimuli in 

modulating retinal ganglion cells responses with respect to full-field (unconfined) stimuli. This 

research line still leaves several open questions, but I estimate that my research has contributed in 

setting a solid ground for ongoing and future studies. 

Achieved milestones  
 

During my Ph.D., the synergic effort within the IIT-NetS3 laboratory provided an excellent 

science and technology environment to implement my computational investigation. Specifically, 

former and present colleagues supported this work with high-resolution recordings of spiking 

activity from biological preparations that served as the basis for biophysical and realistic 

computational modeling and analysis. Overall, the major achievements and findings of my 3-years 

PhD, see Fig 1.1. research are shortly summarized here below. 

1. I implemented a computational network model that mimics in silico the spontaneous spiking 

activity recorded with high-resolution CMOS-MEAs and that allows to advance our understanding 

of the impact of single cell interaction within in vitro networks of hippocampal neurons.  Within 

this computational framework, all the biological relevant properties included in the network 
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model, ranging from the dynamics of network-wide spiking activity down to the concentration of 

neurotransmitters available in a given synapse, are synthetically available and can be integrated 

with experimental evidence. In this respect, the computational model provides a formal 

description of the biological processes observed in our experiments as well as useful predictions 

on the outcome of experiments that are difficult to perform. Further, I was also able to adapt and 

apply this model to estimate the spontaneous activity that was experimentally observed in a 3D 

neuronal culture model and in a genetically modified 2D culture model of Paroxysmal disorder. 

2. I have found that the computational network model can provide good estimations of the 

quantities of interest resulting from experimental manipulations of the network, without requiring 

the addition of time-consuming adjustments of parameters. Indeed, it was essential to understand 

the limits of my model to capture and reproduce the spiking activity of a network. To demonstrate 

this, the model was challenged to reproduce recordings acquired with high-density CMOS-MEAs in 

specific cases, e.g., by using chemical compounds that selectively block specific ion channels. The 

achieved results demonstrate the capabilities of this in-silico model to study and parallel 

experimental observations on these neuronal cultures. 

3. The computational model was successfully exploited to investigate determinants underlying 

the spontaneous generation of network bursting events in networks of cultured neurons. These 

network bursts are propagating and transient spiking activations of the network, lasting a few 

hundreds of milliseconds and separated by quiescent intervals of sparse spiking activity. Our 

results suggest that a particular, self-organized, local network organization is in charge of initiating 

network burst. These functional communities of neurons most likely act by amplifying the pre-

burst spontaneous and sparse spiking activity of the network. Simulation and experimental results 

show that the amplification relays on highly clustered and recurrent circuits that are repeatedly 

activated by similar spiking patterns.  

4. The assumptions used to implement the computational model used to investigate network 

bursts also suggest that a simple connectivity rule based on the relative distance among neurons 

might be sufficient to explain the self-organization of the functional communities of neurons 

responsible for the insurgence of network bursts in cultures. This connectivity rule acts by 

introducing inhomogeneous connectivity in the network and is plausible with experimental 

evidence. 

5. I have successfully implemented a fully automated chain for the analysis of large-scale 

recordings in the retina that allowed to drastically reducing the analysis time and the need for 

human supervision. Differently than for the study on neuronal cultures that could already count 

on a well established set of data analysis algorithms, setting up and validating the experimental 

and analysis machinery was a required target of my work, before even considering implementing a 

computational model of the retina to estimate activity that is not accessible through CMOS-MEA 

recordings (e.g., neuronal activity in the inner layers of a retina). 

6. I have validated and optimized our experimental setup through the analysis of light-evoked 

retinal ganglion cells responses in retina whole-mounts on planar CMOS-MEAs. . Based on the 

analysis of spike train responses I was able to detect artifacts introduced by the light-stimulation 

system and to find countermeasures.   
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7. I applied the automated chain of analysis to reveal the potential effects of long-range 

horizontal interactions in retinal processing. In this first experimental study, we found that the 

extension of uniform light stimuli projected onto the retina can influence the response dynamics 

of retinal ganglion cells and their receptive fields. This suggests that the encoding of visual stimuli 

in the retina is not only restricted to canonical local vertical circuits, but it occurs with the 

contribution of the entire retina, through modulatory effects that might be introduced by long-

range lateral connections that remain to be better understood.  

 

  
Fig 1.1: Overview of the research activities implemented in my Ph.D., namely, to investigate network 

interactions involved in the generation of spontaneous spiking activity in neuronal cultures and, upon 

analyzing and validating large-scale experimental recordings in the retina, in shaping light-evoked retinal 

ganglion cells responses. Concerning my study on neuronal cultures, the major effort was allocated to the 

computational network modeling and to use it to disentangle mechanisms involved in the generation of 

coordinated spiking activity (or network bursts). On the retina, I focused my effort on implementing and 

applying to our study unsupervised analysis tools that allowed revealing the effects of spatially restricted 

visual stimuli in shaping retinal ganglion cells responses that are most likely involving long-range 

horizontal interactions in the entire circuit. 

Organization of the manuscript 
 

This thesis is organized in five chapters. In Chapter I and Chapter II, I will present the relevant 

literature and my work dedicated to the investigation of mechanisms of initiation of coordinated 

spiking events in neuronal cultures. I used a biophysical computational network model that I have 

developed to reproduce experimental recordings from neuronal cultures. Additional extensions of 

the computational model were developed to support the interpretation of experimental findings 

obtained through collaborations established during my Ph.D. These contributions are also included 

at the end of Chapter II and consisted in  using computational model simulations to investigate 

spontaneous spiking activity in 3D neuronal cultures with Prof. L. Ballerini (SISSA, Trieste, Italy) and 

the spontaneous spiking activity in a genetically modified culture model of Paroxysmal disorder, in 

collaboration with Prof. F. Benfenati (NSYN Dept. of IIT, Genova, Italy).  
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In Chapter III I will introduce anatomical and functional notions of the retinal circuit that will be 

instrumental for my study reported in Chapter IV. In the later chapter, I will describe the 

development of an unsupervised data analysis framework for large-scale recordings of light-

evoked retinal ganglion cells responses and its application for the study of the effects of spatially 

restricted visual stimuli. These stimulation protocols were developed to reveal possible 

modulatory effects of long-range horizontal interactions. In particular, I have implemented and 

applied an unsupervised data analysis chain that includes the improvement of data analysis tools 

previously used in the lab and developed within the RENVISION EC-funded project.  

The Chapter V summarizes my dissemination activities, including  peer-reviewed journal 

contributions, oral and poster presentations. This chapter also reports the schools that I have 

attended during my three years of Ph.D. 

In Annexes I-II I report additional information concerning the experimental protocols and 

computational methods used for my studies described in Chapter II and in Chapter IV. Finally, in 

Annex III I report the evaluation report  of this dissertation of both Dr. Michele Giugliano and Dr. 

Tim Gollisch, that kindly agreed on reviewing and suggesting improvements to my work. 

Consequently, in the same section, I have included the changes apported to the dissertation as a 

result of the comments received. 
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Chapter I - Basic concepts of spontaneous 

coordinated spiking activity in in vivo and in 

vitro neuronal systems 

 

 

 

 

 

 

 

In this chapter, at first, I will summarize the major literature describing coordinated 

spontaneous spiking activity in different developing brain circuits, hypothesis of their functional 

role and the potential mechanisms that were suggested to underline the initiation of these 

propagating events. Then, I will introduce the state-of-the-art on the study of spontaneous spiking 

activity in neuronal cultures, hypothesis of mechanisms underlying the spontaneous generation of 

coordinated spiking activity and computational models proposed so far to reproduce the spiking 

dynamics of these neuronal systems. Finally, I will give an overview of the recording techniques 

suitable for monitoring at large-scale these networks of neurons. In all these sections, I will focus 

on aspects that will be instrumental for my study developed in Chapter II that is focused on the 

study of the initiation of coordinated spiking activity in neuronal networks in vitro.  

Spontaneous spiking activity in the early phase of brain development 
 

In the early phase of brain circuits development, even before that newborn neurons 

established chemical or electrical synaptic contacts and form networks, neurons exhibit 

spontaneous electrical activity that is usually uncorrelated among cells1. As soon as neurons start 

forming networks and establish synaptic communication, their spontaneous activity starts 

including coordinated spiking activity patterns2. The spontaneous generation and propagation of 

such patterns of spikes (bursts of action potentials) are the results of cellular interactions 

occurring in these forming networks3, while changes in the dynamics of these coordinated events 

were shown to be driven by the effects of neuromodulation4, GABA switch5 or, integration of 

inputs from upstream circuits or sensory inputs6. Interestingly, as I will shortly review here below 

and as summarized in Table 1.1, so far coordinated spiking activity was observed in the early stage 

of development of different brain circuits, including the retina6, cochlea9, spinal cord10, 

hippocampus11, neocortex 12 and cerebellum13. However, it has to be noted that one of the circuits 

that was so far the mostly investigated is the retina, during the development of the visual 

system8,14. Therefore, several cited references will be referring to this brain circuit. 
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Coordinated spiking activity in the developing retina  

In the developing retina7,15, retinal ganglion cells exhibit transient bursts of action potentials 

that propagate at first (before birth in mice) as waves of depolarization16 and later (after birth and 

before eye-opening in mice) across the retinal ganglion cell layer17. Importantly, changes in the 

dynamics were found to be concomitant with the development and wiring of the retinal circuit 

and with the formation of the visual system18. These propagations of coordinated spiking activity 

events earned the name of retinal waves19 and characterized the spontaneous activity in the 

retina during a transitory period ending at eye-opening (post-natal day 12, P12 in mice). After this 

period they completely disappear and the final refinement of the retinal circuit is successively 

driven by the integration of visual inputs15,16. Retinal waves are classified into three major classes 

that are sequentially expressed at different developmental stages. The first class (stage I, P0-P9 in 

mice) is mainly mediated by gap junctions20. The second (stage II, P9-P10 in mice) depends on 

cholinergic transmission15 and the third class (stage III, P10-P13 in mice) depends on the 

glutamatergic transmission between bipolar cells21. A recent study on retinal waves of my 

laboratory in collaboration with the group of E. Sernagor (University of Newcastle) used high-

resolution CMOS-MEAs in P1-P12 mice retinas17 to characterize the ontogenesis and the 

spatiotemporal properties of retinal waves over the whole retina. It was shown that early 

cholinergic waves exhibited random trajectories of propagation exploring a large area of the retina 

but involving a few ganglion cells. Next, the inhibition provided by GABAergic transmission upon 

maturation (occurring around P6) significantly decreased the speed of propagation. At P10, the 

glutamatergic signaling induced relevant modulation of the retinal waves, determining repetitive 

trajectories originating from a few and well-segregated regions of the retina. At this stage, the 

number of sites originating retinal waves decreased as the circuit further developed until eye-

opening were retinal waves disappeared. With respect to the work of this thesis on neural 

cultures, it is interesting to remark that regardless of the developmental stage, after a retinal wave 

the retinal ganglion cell layer remained in a quiescent state of sparse and asynchronous firing that 

could last for a few tens of seconds up to minutes.  
 

Coordinated spiking activity in the developing cochlea 

Similarly to the developing retina, also the auditory system gives rise to the spontaneous 

propagation of bursts of action potentials9. On the timescale of several tens of seconds, the 

transient and periodic emergence of bursts of action potentials characterizes the network activity 

of the developing cochlea, several weeks before onset of hearing 21,22. During this period, inner 

hair cells drive the spiral ganglion cell spiking activity with a burst of Ca2+ spikes. In turns, the 

excited ganglion spiral cells generate a transient burst of action potentials that are transmitted to 

the auditory centers of the brain24. Whether hair cells are intrinsically capable of orchestrating this 

phenomenon or whether their firing is supported by other cell types is still matter of debate. 

However, recent evidence indicates that the Kolliker’s organ supports the insurgence of this 

spontaneous activity by releasing ATP in a well-defined time interval coincident with the 

spontaneous spiking activity period25. Importantly, at hearing onset24, this coordinated activity 

completely disappears, similarly as it occurs at eye-opening in the retina. 
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Coordinated spiking activity in the developing spinal cord 

Motor neurons in the spinal cord exhibit a similar spiking regime that disappears upon the fully 

functional development of central pattern generation circuits27. Indeed, motor neurons coordinate 

among themselves to generate spontaneous and recurrent bursts of oscillatory activity separated 

by a few minutes of silence28 prior to muscle fiber innervation29. Similarly to changes in dynamics 

of retinal waves also spiking pattern elicited by motor neurons evolve during development29,30. 
 

Coordinated spiking activity in the developing hippocampus 

A few days before birth and until a few days after birth also pyramidal cells in the hippocampus 

exhibit bursts of spikes that are correlated among a few neurons31. These recurrent local 

activations later evolve in massively coordinated spiking patterns entraining large populations of 

hippocampal neurons. These coordinated patterns are referred as Giant Depolarizing Potentials11. 

Depolarizing GABAergic transmission underlies and supports the generation of these rhythms5 

with the additional help of a peculiar hub-like network structure32. 
 

Coordinated spiking activity in the developing cerebellum 

Purkinje cells in the developing cerebellum exhibit spontaneous coordinated bursts of action 

potentials that propagate to the base of the cerebellar lobules before establishing the connectivity 

to receive primary inputs13. Purkinje cells, in the absence of any input, exhibit pacemaker features 

of spiking activity33. Differently from the previously mentioned examples, the quiescent periods 

separating the discharges of spiking activity are interleaved by a short time interval of hundreds of 

milliseconds3. As reported in Table 1.1, although each one of these developing brain circuits differs 

in its final network wiring, neuronal cell-types and ultimately biological function, all these brain 

circuits need to self-organize to develop spontaneous coordinated spiking activity by sharing the 

following common properties:  
 

(i)   the coordinated spiking activity events propagate in the developing neuronal network after 

formation of synaptic contacts; 

(ii)  the coordinated spiking activity is intrinsically generated in the network without the need 

of external natural (or artificial) inputs; 

(iii)  the coordinated spiking activity expressed in different brain circuits shares grossly similar 

time-scales of activation; 

(iv) external stimuli can dramatically disrupt these coordinated events;   

(v)  the time course of the spiking activity in the network after a coordinated spontaneous 

event is characterized by a quiescent interval of sparse (or asynchronous) spiking activity. 
 

Overall, the properties of these developmental spiking regimes are also highly conserved across 

species3 and are remarkably robust to small alterations of the neuronal physiology, thus 

suggesting that redundant mechanisms of generation are embedded in newly formed networks1. 

As it will be summarized in the next section, a relevant subject of investigation6,18 regards the 

questions of why neuronal systems do require this stereotyped spiking regime at the early stage of 

their development and how neuronal networks give rise to complex spatio-temporal patterns of 

activity without external inputs. 
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 Time interval of 

appearance 

Spiking activity regime Frequency  

of occurrence 

Retina E17-P1 Localized propagation of 

burst in the ganglion cell 

layer 

30s 

P1-P14 Extended propagation of 

burst in the ganglion cell 

layer 

1-2min 

Spinal Cord E12-18 Oscillatory propagation 

of burst within and between 

spinal cord segments 

1-3min 

Hippocampus E18-15 Correlation of spikes 

among a few pyramidal cells 

8s 

P3-P10 Correlated burst of 

action potential between 

CA3 and CA1 subnetworks 

3-10s 

Cochlea P7-P10 Burst of action potentials 

with features similar to 

retinal waves 

5-60s 

Cerebellum P4-P6 Travelling waves of 

spikes propagating towards 

the cerebellar lobule base 

100ms 

 

Table 1.1. Summary of the spontaneous spiking patterns and of their frequency of occurrence observed 

during the early stage of development of different brain circuits (adapted from 1).  

Functional relevance of coordinated spiking events during brain circuits 

development 

The initiation and propagation of coordinated spiking events across several thousands of 

neurons in a network require the consumption of a not negligible amount of energy 34. Since 

coordinated spiking events were observed during the development of different brain circuits and 

across different species, it is reasonable to consider that this energy is not wasted35 and, as 

already suggested, this type of activity is rather required for the circuit development, for its 

formation, wiring and refinement. Understanding how these endogenous coordinated spiking 

patterns are relevant for circuit development is the subject of several studies36. However, this 

remains an open question in neuroscience.   

A very plausible hypothesis to explain the emergence of bursts of action potentials states that 

the recurrent spiking activity plays a role in driving the strengthening of synaptic contacts and in 

refining neuronal connectivity6. It was also suggested37 that the propagating nature of these 

events can play a role in inducing spatial boundaries that map the spatial organization within the 

circuit to target downstream regions or upstream input circuits. Several studies on retinal waves in 

the development of the visual system support this hipothesis17. Indeed, recent evidence indicates 

that retinal waves can effectively coordinate downstream visual areas by generating correlated 
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waves of spiking activity and, vice-versa38. Hence, coordinated waves of spikes conveyed by RGCs 

to their axonal targets are sufficient for the establishment of eye-specific segregation of the axons 

of retinal ganglion cells8 and are capable of driving activity-dependent wiring of visual circuits 

before vision onset38. Furthermore, the spatial correlations of retinal waves can eventually provide 

a cue to map the activity of retinal ganglion cells onto downstream areas to form a topographic 

map of the visual input in the visual cortex39,40. Similar arguments have been proposed for 

propagating bursts in the early stage of development of the auditory system9. Following what was 

reported for the retina, it was suggested that specifically repeated coordinated spiking pattern 

might help in the formation and refinement of a tonotopy map and frequency tuning in primary 

auditory areas41. Instead, the motor systems are not spatially organized as the visual and auditory 

sensory systems42. Consequently, whether the coordinated spiking activity can contribute in 

mapping spinal circuits onto the peripheral afferents is still a matter of debate6. However, the fact 

that the motor neuron axon pathfinding depends on specific patterns of activity supports the 

hypothesis of a role played by episodic coordinated events in the network wiring also in this 

system43. 

Overall, these examples provide considerable evidence suggesting that spontaneous 

coordinated activity might functionally act as an effective mechanism used to establish and map 

connections among circuits in the developing brain6.  

Mechanisms underlying the spontaneous generation of coordinated spiking 

activity in developing brain circuits 

As previously introduced, parallel to questions on the functional role of coordinated spiking 

activity during the development of brain circuits, another important question regards how these 

events might be intrinsically generated in a neuronal systems36. The observation of this type of 

activity in different brain circuits suggests that the mechanisms underlying the generation of 

coordinated spiking activity should be independent of the intrinsic properties of neurons as well as 

of the architecture of specific brain circuits3. Here, I summarize the most plausible hypotheses that 

were formulated to explain the generation of these events. As it will be developed later some of 

these hypotheses were explored in our study to explain the generation of network bursts in 

neuronal cultures.  
 

Transient network connections 

Fault tolerance and insensitiveness to unreliable neurons may strikingly be achieved through 

redundant network architectures that can be transiently established by neurons in developing 

circuits44. The spread of spiking activity in the retinal ganglion cell layer (RGCL) supports this 

hypothesis because, in immature retinas before birth, the recurrent excitatory network 

established by starburst amacrine cells45 can regulate the generation of coordinated spiking 

activity in the retinal ganglion cell layer through the formation of cholinergic and GABAergic 

synapses. Conversely, at a mature stage, the retinal circuit prevents the spread of action potentials 

along the RGCL layer as it is needed to obtain a fine representation of the visual space46. Similarly, 

motor neurons in the developing spinal cord form a network of excitatory connections locally 
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modulated by interneurons47 that become functionally silent upon circuit maturation48. Before 

hearing onset and with comparable mechanisms, hair cells in the developing cochlea exhibit 

coordinated activity driven by a supporting circuit (Kolliker’s organ) that transiently release ATP23. 

The latter circuit, as well as the purinergic receptors activated by ATP, are present only in a 

defined time window during development that corresponds to an interval between a few days 

after birth and hearing onset9,25. 
 

Role of gap-junctions in regulating network activity 

A network of gap junctions represents another interesting mechanism that might induce 

correlation among the spiking activity of several neurons. Gap junctions can electrically couple 

different neurons and can consequently intrinsically correlate their spiking activity, but they can 

also desynchronize the spiking activity depending on the firing rate49. Although most of the 

electrical connections are removed as chemical synapses appear50,51, some gap junctions between 

specific neuron types persist and can contribute to the generation of spontaneous network activity 

during later stages of development. Further, gap junctions are proved to be involved in 

coordinating the spiking activity of pyramidal cells in the hippocampus at their very early stage of 

development20. Moreover, other mechanisms such as the transient excitatory network formation 

can benefit from the presence of electrical coupling among neighboring cells. For instance, 

electrical coupling contributes to regulate and spread the spiking activity during a retinal wave52.  
 

Depolarizing effect of GABAergic transmission before switch 

Another characteristic feature of developing brain circuits is given by the crucial excitatory 

contribution of canonically inhibitory GABA and glycinergic synaptic transmission2. As also 

investigated by other teams at IIT-NBT, at an early stage of development the high intracellular 

concentration of Cl- induces a depolarizing effect on the membrane potential upon activation of 

GABA receptors. Conversely, at a mature stage, the Cl-  ions diffuse out of the cell thanks to the 

activation of Cl- transporters that reduce the intracellular concentration of Cl- and switch the 

functional role of GABA receptors from depolarization to hyperpolarization5. Hence, during the 

early stage of development, the excitatory contribution of precursors GABAergic hyperpolarizing 

synapses can represent an intriguing mechanism for the onset of coordinated spiking activity in a 

forming network1. Nevertheless, it is not clear yet whether GABA signaling has the same functional 

role in all developing neural systems3. For instance, while in the turtle retina cholinergic retinal 

waves can be disrupted upon GABAA antagonist administration15, in other animal models, such as 

ferrets or mice, the blockage of GABAA receptors induce the modulation of the retinal waves 

without impairing their generation53. Similar results hold true for the developing cochlea9. Instead, 

motor neurons in the spinal cord might benefit from the excitation provided by GABA signaling. It 

was shown that the administration of an antagonist of GABAA greatly reduced, but did not disrupt, 

the onset of coordinated spiking patterns54. On the other hand, it is worth to mention that GABA 

signaling is essential for generating coordinated and patterned activity in the hippocampus, and 

specifically giant depolarizing potentials (GDP)11. In this circuit, the switch from excitation to 

inhibition of GABA receptors is tightly correlated with the disappearance of GDPs55. On the other 

hand, GABA depolarization is the sole excitatory driving force in the developing cerebellum13. 
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GABAergic Purkinje cells are autonomously firing at all stages of development and the blockage of 

GABAergic transmission disrupts the generation of coordinated events11. Thus, the local GABAergic 

connectivity established between these neurons induces correlations among nearby neurons that 

eventually might lead to the propagation of bursting waves towards the base of the cerebellar 

lobule. As the cerebellar network mature, the local connectivity between Purkinje cells greatly 

diminishes and prevents the generation of other coordinated events3. 
 

Extrasynaptic signaling 

Extrasynaptic transmission is an additional mechanism that can be involved in the generation 

of correlated activity in developing neuronal networks36. Cumulative evidence suggests a 

considerable contribution of this peculiar signaling pathway. Spillover of neurotransmitters from 

the synaptic cleft can be sensed by extrasynaptic receptors of neighboring neurons and glia and 

can thus provide inputs for coordinating spiking activity among neurons. Recent evidence shows 

that retinal waves before eye-opening are anticipated by an increase of extrasynaptic glutamate 

that can facilitate the depolarization of retinal ganglion cells and that is not limited to the directed 

target of bipolar cells21. Indeed, at this stage of development retinal waves are not anymore 

mediated by starburst amacrine cells, but rather by bipolar cells56. On the other side, in the 

hippocampus, it was shown that the frequency of endogenous correlated spiking patterns is 

enhanced by transient increases of extrasynaptic glutamate57.  

Homeostatic regulation of networks 

The above-mentioned strategies for establishing coordinated spiking patterns might coexist 

with a different level of contributions and at different phases of circuits development36. 

Importantly, the presence of a set of mechanisms, rather than one, can ensure robustness for the 

generation of coordinated spiking activity in case of failure of a crucial component3,58. For 

instance, in mice models in which the production of acetylcholine was blocked by a transgenic 

modification, cholinergic retinal waves were replaced after a few days by compensatory 

propagations of spiking activity59. Importantly, although the mechanism of compensation is still 

poorly understood, the delayed appearance of such propagations suggests that the retinal 

network needs to compensate the lack of cholinergic waves52 during development. Similarly, in 

mice lacking of the NKCC1 transporter, Giant Depolarizing Potentials in the developing 

hippocampus were still observed, although with fewer neurons were observed to participate in 

these coordinated spiking activity events compared to wild-type conditions60. In this knockout 

mice, GABAergic transmission is never depolarizing and consequently, even though the major 

drive for GDPs entrainment is absent, backup mechanisms such as an increased excitability of CA3 

pyramidal cells, were suggested to most likely be involved in compensating and supporting the 

generation of GDPs61. This evidence open fascinating biological questions on the rescue 

mechanisms that brain circuits can adopt during brain development and to the need of better 

understanding whether the compensated or endogenous spiking activity lead to equally 

performing brain circuit’s implementations. With respect to the work developed in this thesis, 

these observations further confirm the need of brain circuits to express coordinated spiking events 

during brain development and reinforce our motivation in studying how these events might be 

generated in developing neural systems. 
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Spontaneous spiking activity in neuronal networks in vitro 
 

The expression of spontaneous coordinated spiking activity with a changing dynamics during 

development is not only a prerogative of in vivo forming brain circuits, but it is also expressed by in 

vitro grown neuronal networks62. Thus, either in vivo or in vitro neuronal systems seem to be 

committed to a remarkably similar fate consisting in the need of expressing a changing 

spontaneous activity during their development1,63.  

Neurons plated on multi-electrode arrays64,65, regardless of their origin, tend to form networks 

that all converge to a relatively stable and stationary spiking regime in which neurons are 

transiently bursting at high rate and in a coordinated fashion65. These transient events, here 

referred as network burst (NB), last a few hundreds of milliseconds, after which neurons enter in a 

recovery period of asynchronous and sparse firing regime lasting several tens of seconds62.  

Somehow similarly as observed in brain circuits, neuronal networks cultured in vitro (either 2D 

or 3D) express a rich range of dynamical changes in their spontaneous activity66. On top of this, 

experimental observations suggest similarities with in vivo developing brain circuits. First, the 

emergence of NBs in primary neuronal cultures is ubiquitous across different cellular 

preparations65, which can include hippocampal67, cortical 68 and spinal cord69 neurons, from 

different animal models such as rat63, mouse70 and even human IPSCs derived neurons71. 

Importantly, neurons in vitro form networks that retain their tissue specificity65 and intrinsic 

cellular hetherogeneity72 that are also reflected when expressing spontaneous spiking activity and 

network responses to pharmacological treatments. This suggests that the emergence of NBs more 

likely relies on network interactions rather than on single-neuron properties65. In support of this, 

NBs appear in cultures only upon synaptic contact formation64. Blockage of excitatory synaptic 

transmission disrupts the emergence of NBs73. Second, neuronal cultures do not require external 

inputs to exhibit NBs. These events are intrinsically generated and modulated during network 

development74. Conversely, a distributed external stimulation of the network can greatly reduce 

NBs occurrence75,76. This might suggest a similarity with in vivo brain circuits where the 

disappearance of coordinated spiking patterns occurs upon the onset of sensory inputs or 

integration of upstream circuit’s inputs1. Third, the spiking regime expressed by neuronal cultures 

at mature stage is characterized by distinct spatio-temporal patterns of action potentials77. This 

spatio-temporal and propagating dynamics, revealed with the advent of high-resolution recording 

technologies78,79, resemble the spontaneous spiking patterns observed in developing brain circuits. 

Importantly, it has to be remembered that even though in vitro and in vivo spiking regimes 

likely share grossly similar features and dynamics, the direct relation of network bursting events of 

neuronal cultures to the spontaneous coordinated spiking patterns observed in vivo has not to be 

overestimated. Obviously, this is due to the radical differences existing among these neuronal 

systems65,80. Indeed, in vitro neuronal cultures represent a reduced and isolated system with 

respect to in vivo developing brain circuits. Among the many differences, gap junctions between 

neurons grown in vitro are not directly involved in regulating the spiking activity because either 

they are not present81 or do not have an evident functional role73.  
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An overview of neuronal culture development 

Dissociated embryonic neurons from mice or rat plated in cultures form networks that 

continuously evolve during the first weeks of culture and establish a spontaneously active 

network62,70. As a consequence of this development, the spiking activity of these newly formed 

neuronal networks exhibits a considerably large set of qualitatively different spiking patterns66. In 

the case of rat cortical cultures, the extracellular trace of action potentials can be recorded after 4-

5 DIVs. The spiking regime at this early stage is characterized by a sparse and asynchronous firing 

among neurons. Upon synaptic contact formation, NBs start to emerge and persist along the 

lifetime of the culture and tend to regularize their periodicity as the culture ages66. The 

depolarizing effect of GABA, which switch to hyperpolarization after 12 DIVs68, has been proven to 

sustain and coordinate neurons in the network82. The developmental stage of the culture is also 

reflected in its spontaneously expressed spiking activity. Although gradual and significant changes 

in spatio-temporal patterns63 and interneuronal correlations62, the spiking activity converges after 

roughly 21 DIVs to a stable regime characterized by NBs interleaved with quiescent periods of 

sparse spiking activity. At this stage, neuronal cultures are commonly considered as “mature”74. 

Interestingly, the network bursting regime has been proven to support neuronal growth during the 

lifetime of the culture and neurons that are not recruited in NBs tend to be eliminated from the 

network83. 

Cellular and synaptic properties of neuronal cultures 

Although some intrinsic cellular properties are inherited from the original brain circuit from 

which neurons have been dissociated, neuronal cultures also express spontaneously forming 

cellular and synaptic features that are observed in different preparations. The next two sections 

summarize the key elements preserved in cortical and hippocampal cultures based on 

experimental works reported in the literature. Given the ubiquitous appearance of NBs in 

neuronal cultures, this review will focus in particular on those general features that are not tissue 

specific or dependent on the animal model. 
 

Neuronal composition of in vitro networks  

Neurons in networks cultured in vitro can be divided into two major populations of excitatory 

and inhibitory neurons (approximately 80%-20%, respectively). Alterations in the excitatory to 

inhibitory balance was proven to modify the emerging network firing dynamics. For instance, in 

networks where the number of inhibitory neurons was pairing the number of the excitatory ones, 

the spontaneous network activity was observed to become more patterned and with long 

sequences of NBs that resemble superbursts84. The heterogeneity of the cellular properties within 

a neuronal network is another key intrinsic feature of these dynamical systems. Such neuronal 

heterogeneity originates at different scales. First, the input/output transfer function of each 

neuron strictly depends on the single-cell intrinsic properties. Second, the amount and type of 

synaptic contacts established by each neuron can vary considerably. Finally, the biophysical 

features of individual neurons, such as their excitability, was also proven to significantly differ 

within a population85,86 and was it shown to change over long-time-scales70. Despite such 
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heterogeneous neuronal properties, networks of neurons express stable spiking regimes and firing 

distributions with low inter-culture variability70. This apparent contradiction (the unreliability of 

single cells vs. robust and stable network spiking activities) might be explained by the interaction 

of several distinct units through a suitable architecture of connections in the network. Whether 

this heterogeneity is functional for the implementation of stable and reliable network functions is 

still a debated question.  
 

Synaptic transmission in neuronal cultures at mature stage 

As previously introduced, network bursts in cultures arise upon wiring of the network and 

regardless of the animal model or brain circuit used for the preparation. Consequently, it is 

reasonable to consider that network interactions and neuronal connectivity, both mediated by 

synaptic transmission, are fundamentals of network bursts generation.  

In cultures, the main synaptic interactions are given by three major types of synaptic contacts, 

namely AMPA, GABA, and NMDA. Several works investigated the effects of antagonists of AMPA, 

GABA and NMDA in modulating the network spiking activity. Here, I shortly summarize this 

literature. Importantly, note that in a virtually uncoupled network, as it could be obtained by 

blocking all the mentioned receptors, the network bursting regime disappears87, thus stressing the 

importance of synaptic communication for coordinated spiking activity.  

Since network bursts require neurons to fire sequences of densely packed action potentials, an 

essential condition for neuronal depolarization is the presence of excitatory synaptic contacts. At 

mature stage, the only synaptic source of excitation is provided by AMPA and NMDA receptors88. 

The blockage of these two receptors through CNQX and APV87 or by CA2+ removal89 determines 

the disappearance of network bursts. Notably, the blockage of AMPA transmission (as obtained by 

using CNQX either with the presence67 or not90 of glycine to avoid interaction of CNQX with 

NMDA) while leaving GABA and NMDA receptors unaltered, has the effect of blocking the network 

bursting regime. On the other hand, the same pharmacological treatment in Mg2+-free medium 

does not block the generation of network bursts88. In the latter experimental condition, NMDA 

receptors do not require the effect of AMPA to depolarize the membrane potential (removal of 

magnesium block) and, consequently, they can be activated independently from AMPA activity. 

However, in normal conditions the activation of NMDA receptors strictly requires a sustained 

depolarization to remove the Mg2+ block and, consequently, to generate a depolarizing effect91. 

This evidence suggests a primary role for AMPA in triggering NBs in normal conditions, but also 

that NMDA receptors can provide an additional excitatory drive depending on AMPA receptor’s 

activity. Interestingly, the blockage of NMDA receptors when leaving functional the AMPA and 

GABA transmission, for instance upon APV administration, greatly reduces the bursting period of 

neurons27 and minimizes the reverberatory spiking activity after the onset of a network burst92,93. 

Moreover, neurons in AMPA driven networks (i.e., with GABA and NMDA blocked) exhibit short 

and brief burst compared to those observed in purely NMDA driven networks (i.e., with GABA and 

AMPA blocked). This indicates a potential role of NMDA receptors in supporting persistent and 

long lasting bursts87. Finally, the blockage of GABAergic transmission increases the spiking rate of 

the culture and induce epileptiform spiking activity94 with intense bursting95. Furthermore, local 
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blockage of GABAergic transmission determines the insurgence of new complex spatio-temporal 

patterns of spiking activity with respect to baseline96.   
 

Network Bursting Regimes in neuronal cultures 

The occurrence of quasi-periodic periods of tonic spiking (>100Hz) lasting a few hundreds of 

milliseconds and separated by a quiescent period of sparse firing (<.5 Hz) was already observed in 

in neuronal cultures by Robinsons et. al.97 in the early 1990s. Very early works that recorded the 

activity of neuronal cultures using planar multi-electrode arrays (MEAs) suggested that these 

periods of tonic firing (or network bursts) could be propagating events65, while successive 

investigations considered these events more as precise network-wide synchronization events 

rather than propagations68,89,98,99. Recently, large-scale recording techniques such as calcium 

imaging79 and high-resolution CMOS multi-electrode arrays78 confirmed the propagating nature of 

network bursts.   

Among the different studies on the spontaneous activity expressed by neuronal cultures, the 

most comprehensive classification of the network bursting dynamics along with in vitro 

development was reported by Wagenaar et al.66 It was shown that these networks develop a 

range of different spiking activity regimes. The range of bursts is remarkably large and it includes 

tiny, variable, bimodal, fixed size, long-tailed bursts or superbursts. Overall, this range of 

coordinated spiking events can be reduced into two main categories of either single network 

bursts or superbursts. While a superburst consists of a chain of network activation separated by 

less than 500ms, a single network burst is a unique sharply defined network-wide depolarization. 

The classification of network bursts with respect to their spatiotemporal spiking pattern77 also 

revealed the expression of only a few classes of events (i.e., sharing similar spatio-temporal 

patterns ) in each culture (typically <10). These events are repeated over time but in an aperiodic 

fashion72. Additionally, as it will be more deeply addressed in Chapter II, the presence of only a 

few classes of these network-wide events77 also implies the presence of only a few sites in the 

network that initiate these events and their propagation in the network78. 

Overall, the spontaneous coordinated spiking activity expressed by neuronal cultures at a 

mature stage roughly splits equally between network bursts and superbursts events66. The 

expression of these two major classes of spiking regimes suggests the presence of two 

mechanisms of ignition for an NB depending on whether the NB is the first elicited after a 

quiescent period or if it is initiated right after another NB, as part of a superburst84,100. Indeed, at 

the end of a single NB, synaptic phenomena such as short-term depression, or cellular features 

such as spike triggered hyperpolarizing currents64, prevent the generation of successive NBs at 

short delays from previous network-wide events and tend to drive the network into a quiescent 

period. Although the mechanisms underlying the generation of superbursts are still debated, 

several hypotheses deriving in particular from computational studies have been proposed92,100–103. 

Among these hypotheses, it has been suggested that a potential drive to initiate NBs just after 

another event might be due to bundles of connection along the boundary of the in vitro 

network103. Indeed, at the end of an NB, these bundles of neurites can provide an excitatory 

feedback signal that might depolarize neurons at the end of their recovery phase103. Another 

potential candidate revealed by computational simulations relies on synaptic features. The 
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interplay between short-term synaptic facilitation and depression might induce a chain of NB, 

specifically with a network interacting with strong facilitating synapses104. On the other hand, the 

asynchronous release of neurotransmitters has also been shown to be able to induce a 

superbursting regime in the network102. Finally, the long-lasting depolarization determined by 

NMDA receptors might support persistent activities such as superburst105. In parallel, experimental 

evidence suggested that the asynchronous release induced by calcium accumulation during 

bursts92 and the activation of NMDA receptors87, rather than strong facilitating synapses or ad-hoc 

properties of the network connectivity, are potential mechanisms supporting the generation of 

persistent activity as superburst in neuronal cultures92.  

Hypothesis of mechanisms underlying the spontaneous generation of coordinated 

spiking activity in neuronal cultures 

 

As for in vivo brain circuits, the capability of cultured neurons to form networks that generate 

spontaneous network bursts has also raised the interest of several studies65,79,89,106. Different 

potential mechanisms were proposed to explain the emergence of these events in these in vitro 

models. From the theoretical point of view, a formal and elegant mathematical theorem 

(Kuramoto model107) states that network synchronization can be achieved if a system of identical, 

or nearly identical, oscillators are coupled in an all-to-all fashion, with interactions that depend 

from the sinusoidal phase differences among oscillators. Extensions of this theorem to local dense 

network connectivity instead of all-to-all connections results in a richer dynamic comprising 

uniform synchrony or spatiotemporal waves and spirals propagating patterns. Although it is 

tempting to adopt the Kuramoto model for a formal explanation of the emergence of spontaneous 

coordinated spiking activities in a network, this model has several limitations once applied to 

biological systems. First, it requires nearly similar intrinsically oscillating neurons. Second, 

although a dense local connectivity might be a first approximation of the connectivity in a 

neuronal culture, the assumption of a diffusive coupling holds true only during the early phase of 

network formation68,81. Third, the dynamics resulting from the adoption of the Kuramoto model is 

intrinsically periodic, while network bursts occur in an aperiodic fashion72.  

Despite these limitations, this theoretical model provides some hints on how neuronal cultures 

might establish network-wide coordinated activity. An intriguing hypothesis derived from the 

Kuramoto model considers the presence of intrinsically oscillating neurons, or pacemakers, that 

can effectively entrain the entire network into the network bursting regime. However, while the 

presence of pacemaker neurons has been observed in young cultures, there is no clear evidence of 

the presence of intrinsically oscillating neurons in these networks at a mature stage. Several pieces 

of evidence indicate that the membrane potential of neurons is stable between bursts108, no 

changes in the excitability between bursts occur68 and pacemaker potentials have never been 

recorded in hippocampal cultures67,68. Further evidence75 also indicates that intrinsically bursting 

neurons were found only in neuronal cultures younger than 21 DIVs, while cultures older than 

three weeks are mostly composed of random spiking neurons. 

Alternatively, several works98,109–111 reported the presence of individual or groups of neurons, 

referred as “burst leaders”, that can statistically lead to the generation of NBs by firing at the 



19 
 

onset of these events109. The overall mechanism proposed in these works suggests that a “primary 

circuit”109 of burst leaders activates surrounding neurons with a percolation process and can thus 

drive the spiking regime of the entire network. Under this scenario, burst leaders fire in advance 

presumably because of a higher input connectivity and excitability than other neurons in the 

network. However, although a considerable high firing rate is a characteristic feature of burst 

leaders, this is not a necessary property of these neurons109. Another possible scenario considered 

a direct interaction among burst leaders to coordinate among themselves the initiation of an 

NB112.  

Studies suggesting the presence of burst leaders highlight that specific cellular structures of 

the network might drive the generation spontaneous network-wide spiking activities. On the other 

hand, to overcome the need of the presence of neurons with specific properties in the network, 

another hypothesis for NB generation considers that these events are the result of the interaction 

of large populations of neurons. These interactions might involve different neuronal cell-types113 

and different network-wide architectures98. However, the experimental observation that 

spontaneous coordinated spiking activity also emerges in small networks of a few tens of 

neurons67 is in contrast with this hypothesis.  

More recently, a hypothesis that recapitulates the salient features of the different previous 

explanations suggested that NBs might be originated by the interplay between the individual 

dynamics of single-neurons and local network interactions65. By considering this hypothesis, the 

work of Orlandi et al.79 provided the computational evidence that the particular regions of the 

network that are devoted to the enucleation of NBs from the uncoordinated spiking activity act as 

noise amplifiers. As it will be developed later in this work, our results confirm and extend this 

hypothesis both through computational and experimental results. Our study revealed that 

complex network behavior could simply arise with a simple rule of connectivity and spontaneously 

active, non-oscillating neurons, thus indicating a promising strategy used by biology to induce 

spontaneous activity at the early stage of development without needing to rely on task-specific 

neurons or network architectures. 

Computational modeling of the spiking regimes in neuronal networks 

The investigation of the spiking regimes that a neuronal network can express can benefit from 

several biophysical computational models that can be used to test hypothesis and support 

experimental evidence. However, it has to be highlighted that each one of the proposed models is 

based on specific assumptions. Although some modeling choices are relatively simple and 

supported by experimental evidence, such as the excitatory to inhibitory ratio, some other choices 

are derived, in the best case scenario, from educated guesses and thus represent a-priori 

assumptions.  

An important theoretical work of Brunel114 has demonstrated that sparsely connected 

excitatory and inhibitory integrate and fire neuron models115 can exhibit a rich repertoire of 

spiking regimes depending on the strength of the coupling among neurons and their intrinsic 

spiking activity. Although a neuronal culture represents a much more complex dynamical system 

compared to the network configuration that was analytically studied in Brunel’s work, this formal 
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result provides an interesting indication on how to implement and numerically solve biophysical 

models of neuronal networks. Parallel to this study, the computational model of Markram et al.116 

has provided one of the first attempts to replicate complex network spiking activity in silico. In this 

pioneering work, authors have shown that networks of neurons with randomly connected 

excitatory and inhibitory synapses equipped with short-term plasticity mechanisms can exhibit 

spontaneous, network-wide synchronization of the spiking activity. Specifically, network 

synchronization occurred and ended as a consequence of the short-term depression of excitatory 

synapses. Indeed, in this model it was observed that the network synchronization disappeared 

whenever the firing rate distribution of neurons shifted to high firing rates, thus preventing the 

recovery of synaptic neurotransmitters. Despite the general weaknesses of this work resulting 

from the adoption of a random connectivity and from the intrinsically oscillatory behavior of 

neurons, this model has set the ground for further and more detailed biophysical models of 

neuronal networks. Next, I will shortly summarize some of these works. 

Integrate and fire neurons exhibit only two possible firing regimes, either periodic firing or no 

spiking activity, depending on the steady input current that is provided. Consequently, to relax the 

assumption of a network of coupled oscillators, Segev et al.99 proposed to use a dynamic threshold 

that depends on the membrane potential to make neurons to fire. Although the authors 

implemented an all-to-all connectivity rule reminiscent of Kuramoto oscillators, with these settings 

and by including depressing synapses, the simulated network exhibited aperiodic network 

synchronizations. Importantly, while precise synchronous oscillation was derived from an all-to-all 

network connectivity, imprecise and approximately synchronous network events could be 

obtained with a sparse random connectivity117. The desynchronization effect induced by sparse 

connections was also a function of the coupling strength among neurons. Surprisingly, while an 

increased synchrony could be easily obtained by increasing the strength of excitatory-to-inhibitory 

synapses, a strengthening of inhibitory-to-excitatory synapses did not decrease the synchrony, 

thus indicating that the interplay among excitatory and inhibitory neurons could effectively 

modulate the spiking activity in an unexpected manner.  

All works that have followed this approach85,116,118,119, however, did not truly attempt to mimic 

the biophysical properties of a specific neuronal system but rather investigated under which 

conditions a network of oscillatory-like entities could precisely synchronize. Instead, to reduce the 

gap between simulation and biology, Persi et al.118 upgraded and further developed the network 

model of Markram by driving the individual neuron spiking activity through random input currents 

and by mimicking the neuronal heterogeneity in terms of input resistance. With these settings, it 

has been possible to match the experimentally observed features of the interspike interval 

distribution as well as the internetwork burst distribution of mature cortical cultures106. However, 

the inclusion of the neuronal heterogeneity had a cost on the applicability and goodness of the 

model. Indeed, different virtually indistinguishable network behaviors can arise from different 

combinations of synaptic settings or other parameters120, thus suggesting that it can be easy to 

force simulations to the desired output and thus limiting the biological plausibility of the model. 

On the other hand, the similar behaviors that can arise from large and variegated sets of 

parameters in this model also suggest that biology might exploit a large number of configurations 

to generate reliable and robust behaviors at the network scale. For instance, it may be sufficient to 



21 
 

have an appropriate set of network properties to produce the desired circuit behavior without 

fine-tuning of any given synaptic or cellular characteristic. Hence, based on this consideration the 

computational investigation in this field shifted to studies on the network connectivity features 

that could efficiently generate reliable network bursting regimes.  

Small-world networks121 represent a good abstract candidate for the generation of network-

wide synchronizations since they combine regular local connections with long-range. Roxin et. 

al.122 reported that while regular unidimensional networks of purely excitatory neurons did not 

show network synchronization phenomena, the presence of a few shortcutting connections could 

entrain the network in the self-sustained generation of network burst. With all the limits of this 

simple network model, this work demonstrated that the network architecture could have an 

impact on the generation of the collective spiking activity. An additional feature of small-world 

networks is that the transition from a sparse spiking regime to an almost synchronous regime 

occurs abruptly and requires only a few of shortcutting connections123.  

Scale-free network was also proven to be successful in the generation of network 

synchronization compared to random graphs network topologies. In these network models 

constructed based on Hopfield-type rules, a small subset of nodes, or hub neurons, is connected 

to a large fraction of the remaining neurons. Consequently, these hub neurons are in a favorable 

position to regulate the spiking activity of the whole network124. In these studies, it has also 

suggested that a potential mechanism for the generation of NBs relies on the self-organization of 

developing networks into a hub-like architecture125. Interestingly, the presence of a hub-like 

network structure was observed in the early phase of the developing hippocampus, where the 

excitatory drive of interneurons that extend their range of connection over a wide set of neurons 

could dictate the initiation of coordinated spiking activity32.    

Network-wide recordings of neuronal activity 

During the last decades, the number of simultaneously recorded neurons in vivo doubles every 

seven years126 mimicking to some extent Moore’s law for transistor density. In this respect, the 

largest contribution that allowed this exponential sampling increase is largely due to the advent of 

multi-electrode arrays (MEAs) and of optical recording methods.  

The usage of extracellular electrodes dates back to the Galvani's experiments on frog’s legs 

published in 1791 and represented one the earliest approaches to record and investigate 

bioelectrical activity generated by neurons127. Later technological developments lead to glass 

micropipette electrodes that allowed single-cell intracellular measures of the resting membrane 

potential128. The evolution of this approach gave rise to the introduction of the patch clamp 

technique129, which allows the recording of the membrane potential variation induced as a 

consequence of neuronal activity. The patch clamp technique is a good approach for monitoring 

single neurons and it provides a remarkable signal to noise ratio due to the direct access to the 

intracellular environment. However, its major limitations are the intrinsic invasiveness of the 

approach, which impedes long-term recordings, and the need of fine positioning individual 

pipettes, which limits the number of simultaneously recorded units. The latter drawback 

constituted the primary motivation to develop techniques capable of satisfying the increasing 



22 
 

need of sampling large neuronal populations to investigate neuronal interactions. Historically, this 

goal was achieved by realizing bundles of single extracellular electrodes130 as well as by realizing 

with microelectronic fabrication processes multi-site measuring devices by embedding a few tens 

of electrodes over a plastic substrate131,132. The latter approach allowed the first monitoring of the 

extracellular activity of cultured dorsal root ganglions in 1972133.  

G. Gross and J. Pine134,135 introduced in different pioneering works the concept of 

microelectrode arrays (MEAs) by designing a planar multi-site device on which cultures could be 

grown and extracellular activity recorded. The device of G. Gross was used to record single spikes 

of over 3mV peak-to-peak in amplitude from isolated snail ganglions. J. Pine was the first 

demonstrating the use of multi-electrode array (MEAs) devices to record from mammalian 

neurons. Further developments were applied to several experimental models136 such as 

dissociated neuronal culture135, murine spinal neuronal networks137,138, retina139, spinal cord140 

and cardiac myocyte cells141 and allowed long-term recordings142. These first devices were 

designed and constructed within the laboratory and consequently lacked of standardized shapes, 

arrangements or electrochemical properties of the electrodes143. However, the general properties 

and key concepts of these first devices do not differ much; they are all based on the individual 

connection of electrodes with a contact pad through a metal wire. These devices use individual 

microelectrodes to sense the small amplitude (typically a few tens to hundreds of microvolts) 

voltage variations (compared a reference electrode) occurring in the surrounding extracellular 

space that can be induced by nearby neurons. Due to the extracellular neuron-electrode coupling, 

these microelectrodes do not break the cellular membrane and can monitor the neuronal activity 

for long-time (up to months) without harming neurons. Hence, contact pads represent nothing 

more than simple wires; they passively connect the region of interest to the outside world, where 

external electronics can condition and process the bioelectrical signals. Thanks to their simple 

design, these passive devices have been proven to be extremely robust in terms of accessibility 

and ease usage in a broad range of research and clinical applications136. However, the hard-wired 

signal transmission in this device determines considerable constraints on the number of the 

electrode to provide a more accurate sampling for the space required by the tracks within the 

chip, the number of the contact pad and a potential cross-talk among many closed by lines. The 

spatial arrangement, the number of electrodes, their morphology and electrochemical properties 

all influence the sensing performances (i.e., signal-to-noise ratio, sensing field, stability, etc.). 

Despite the sub-millisecond temporal resolution of these devices, the limited number of 

electrodes integrated into conventional microfabricated MEAs provides a spatially down-sampled 

description of the overall network activity. In this regard, two different technologies found a 

successful application to significantly reduce such down-sampling.  

Specifically, live-imaging techniques based on fluorescent dyes, such as calcium-imaging, have 

been demonstrated for multiple single-neuron recordings. Although these approaches provide 

single-cell resolution, they typically compromise on the temporal resolution and are sensitive to 

slow varying signals as the calcium concentration inside the cells144. Nevertheless, with this 

approach, hundreds of single neurons can be simultaneously monitored both in vitro 145 and in 

vivo146 (up to few hundreds of micrometers in depth using 2P microscopy techniques). 

Improvements of optical systems through CCD cameras and DLP mirrors in combination with 3P 
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systems might provide in the incoming future 3D recordings of deeper brain regions. In parallel, 

advances in biomolecular optical probes lead to a new generation of GCAMP indicators with a 

superior temporal resolution compared to conventional one. Current developments of the 

fluorescent reporters provided a promising generation of indicators that are sensitive to voltage 

variation rather than calcium concentration, allowing the membrane potential monitoring 

dynamic of a single cell within a network.  

With a different approach, the advent of low-power microelectronic technology based on 

Complementary Metal-Oxide Semiconductor (CMOS) circuits provided a mean to tackle these 

limitations by combining the passive acquisition of MEA with an integrated CMOS circuit capable 

of signal processing as signal amplification and multiplexing147. Further application of the CMOS 

technology in multi-electrode array designs lead to new generations of monolithic microelectronic 

devices (CMOS-MEAs) with dense and large-area electrode arrays. In this case, to increase the 

density of electrodes, the required circuits for amplification, filtering, addressing and time division 

multiplexing of the electrode signals can be integrated right below the electrode surface. These 

active devices integrate all the electronic components within the electrode matrix itself and this 

approach allowed to drastically diminishing the inter-electrode pitch while preserving a large 

recording area of several square millimeters. The advantages of these devices148,149 are (i) the 

limited number of output contact pads, as most of the signal processing is performed on-chip, (ii) 

the quality of the signal that is immediately processed and digitized directly underneath the 

sensing electrode, minimizing cross-talk among adjacent electrodes, and (iii) the capability of 

monitoring neuronal networks over large fields-of-view (several square millimetres), down to 

single cell-resolution and at high temporal resolution (sub-millisecond). 

Although the potential of the CMOS miniaturizing technology, the number of recordable 

electrodes still represent a limit for MEAs. Nowadays, the electrode densification achieved with 

CMOS bioelectronics lead to devices with 11’016 microelectrodes (electrode size of 7 μm and 17 

μm pitch size) over a total recording area of 2 x 1.75 mm2, and thus a density of 3150 

electrodes/mm2. This platform, originally devised by the group of A. Hierlemann provided a spatial 

sampling accuracy of a few tens of micrometers, but only from a small and selectable subset of the 

available recording electrode channels149. Beside the latter constrain yielding to a simultaneous 

recording of a few hundred of electrodes, this technology has been used to monitor with 

unprecedented details, the interactions among a few neurons by tracking the signal propagation 

within their axonal and dendritic arborisation150. The recent development of this technology 

resulted in a novel CMOS-MEA featuring 59’760 electrodes with 2048 actively recording channels 

for in vitro investigations151. 

Differently than targeting the acquisition of highly accurate electrical images from a subset of 

on-chip electrodes, devices providing a large number of recording electrodes and capable of 

whole-array sub-millisecond recordings were developed in CMOS technology based on the 

concept of active-pixel-sensor (APS), i.e., platforms that enable direct signal conditioning, 

processing, multiplexing and digital conversion for each electrode-pixel. This approach has been 

declined in a commercially available platform152 that provides a coarser and homogeneous spatial 

sampling (42 µm electrode to electrode pitch yielding a 580 electrodes/mm2 density) and a full-

frame stream of electrical images of the neuronal network in contact with the chip95. Specifically, 
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the chip features 4096 squared electrodes of 21 µm side arranged in a 64x64 matrix that covers an 

area of 7.11 mm2. Differently than Hierlemann’s devices, in this platform each electrode is an 

active-pixel-sensor and, consequently, it is readily accessible individually. Hence, the selection of a 

sub-region of interest yield to an increase of the sampling rate proportional to the amount of 

discarded electrodes.  

My work deals with recordings based on this later CMOS-MEA device developed in our 

laboratory and that was proven to accurately quantify network spiking activity153,154 and resolve 

with greater details network-wide phenomena such as the propagation of network burst in 

cultures77 or retinal waves in retinal whole mounts155. 
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Chapter II - Computational and 

experimental study on the initiation 

mechanisms of spontaneous coordinated 

spiking events in neuronal cultures 

 

 

In this chapter, I report and discuss results obtained from my experimental-computational 

study on the mechanisms of initiation of coordinated spiking events in neuronal networks in vitro. 

This study integrates the analysis of the spontaneous spiking activity recorded with my colleagues 

using CMOS-MEAs and hippocampal neuronal cultures and the analysis of synthetic data 

generated by the computational network model that I have developed. While experimental 

evidence provided assumptions and necessary evidence enabling to develop and validate the 

computational model, the computational model enabled to exploit its complete parametric 

description to investigate different hypothesis of burst initiation.  

At first, I will summarize the aims and rationale of this study. Then, I will report the 

characterization of the spontaneous spiking activity that we recorded in these networks using 

CMOS-MEAs and, successively, the development and validation of a computational network model 

mimicking such spiking dynamics. The validation also included a series of studies using the model 

to investigate experimentally observed effects of pharmacologically manipulated synaptic 

transmission. This is followed by a section in which I report results obtained in my experimental-

computational study on the initiation of coordinated events (or network bursts, NBs). Finally, I 

describe applications and extensions of my computational network model that I had the 

opportunity to explore through collaborations.  

Aims and Rationale  
 

As described in Chapter I, spontaneous network-wide synchronization (or coordinated spiking 

activity) interleaved with periods of sparse spiking characterize the spontaneous activity of 

neuronal cultures1 after network formation. Neurons in cultures mature and self-organize to form 

complex neuronal networks2 that show the spontaneous generation of biological electrical activity 

in the form of trains of action potentials3,4. Differently than organoids5,6 or 3D cortical cultures7, 

that are 3D in vitro preparations whose network connectivity and cellular properties develop from 

undifferentiated cells following similarities with brain circuit development, these 2D networks lack 

of evident physiological network structures. However, such lack of organization is just apparent. 

Indeed, despite the variable network connectivity and cellular composition, different neuronal 

cultures remarkably share common features. First, even though cultures are prepared with 
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variable compositions of primary cells, the excitatory to inhibitory neuron ratio is conserved across 

different mature neuronal cultures. Second, although neuronal cultures are isolated systems, they 

are spontaneously active and exhibit a steady spiking activity without any external stimulation. 

Third, different preparations express similar spiking regimes and the self-generation of highly 

reproducible complex spatiotemporal firing patterns. Additionally, at mature stage, the firing rate 

distributions exhibit a log-normal like profile which is reliably preserved across different neuronal 

cultures.  

Finally, it is plausible to consider that neurons grown in vitro inherit the genetic features and 

cellular properties of the stage of in vivo development reached at the time of their dissection. In 

addition to these biological properties, the experimental use of high-resolution CMOS-MEAs8 

electrophysiological recordings allowed to access a large number of spiking neurons in these 

networks, thus providing a unique experimental opportunity to investigate their spontaneously 

firing regimes at a very low undersampling of cellular activity. Consequently, with respect to the 

aim of my study in vitro systems on CMOS-MEAs are an interesting model to investigate 

mechanisms and biological functions underlying the spontaneous generation of coordinated 

spiking activity. 

Investigating the mechanisms underlying the spontaneous generation of coordinated 

spontaneous spiking activity in these isolated and self-forming neuronal networks might reveal 

basic and robust mechanisms exploited by neurons to set the basis for their subsequent 

integration in functional neuronal circuits. However, even though the initiation of spontaneous 

bursts of spikes and their subsequent propagation in a neuronal network represent a hallmark of 

developing circuits, the network mechanisms behind the initiation of these burst events are not 

fully understood yet.  

As discussed in Chapter I, two major classes of mechanisms were proposed to contribute to the 

autonomous generation of network bursting events9. First, from the neuronal doctrine, the focus 

is on individual neurons that regulate the network spiking activity and trigger network-wide 

patterned activity through a burst of action potentials. Consequently, these neurons require a 

peculiar set of features in order to act as pacemakers of the network, including a high number of 

connections, a favorable position in the network in which they are embedded, peculiar intrinsic 

properties as excitability or periodic bursting. On the other hand, the new large-scale techniques 

of investigation10 put forward the hypothesis that the patterned spontaneous activity might result 

from the interaction of single neurons rather than from the functional role of individual 

neurons11,12. In this respect, the ubiquitous emergence of coordinated spiking patterns in the early 

stage of brain circuits with different wirings suggests a highly preserved mechanism of initiation 

and an appealing contribution of the local network connectivity 13.   

As described in this chapter, in my work I aimed at investigating the possible mechanism of 

initiation of spontaneous network bursts in neuronal networks in vitro using large-scale 

experimental recordings and by exploiting a data-driven computational network model to test 

different hypothesis.  
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Limitations of experimental technologies motivate computational network 

modeling  

Despite the remarkable improvements in large-scale recording technologies and the emerging 

opportunities offered by micro-/nano-electrodes for intra-cellular like signals recordings14,15, 

current methods do not allow to simultaneously acquire the intracellular membrane potential of 

each neuron in large networks even in cultured 2D networks. Additionally, it is currently not 

possible to experimentally acquire a full-detail information about the actual structural and 

functional connectivity of a network or details on additional players (e.g., receptors, synapses) that 

can contribute in shaping the network dynamics. This information is essential in order to 

understand which are the necessary elements exploited by neuronal networks to give rise to the 

complex spatiotemporal patterns and to correlate every single dynamical unit with the overall 

network activity. Indeed, minimal perturbations of the units can lead to unpredictable outcomes in 

a complex network. On the other hand, the robust behavior of neuronal cultures also indicates the 

presence of an invariant and persistent mechanism of generation that is not sensitive to the 

activity of all possible players. Hence, understanding which is the set of features that are essential 

and those that are negligible requires the full characterization and monitoring of the neuronal 

system. Although such detailed and multi-scale description still represents an enormous challenge 

for current neurotechnologies, the use of in silico simulations through computational biophysical 

modeling of neuronal networks might be exploited in parallel with the nowadays available 

experimental recording technologies. Within this framework, experimental evidence provides the 

ground truth to generate assumptions and hypothesis that can be then tested and supported via 

computational investigations. 

In this work, I exploited high-resolution experimental datasets in combination with simulations 

to disentangle determinants underlying the initiation and the dynamics of collective bursting 

activity in cultured neuronal networks. Importantly, the high spatial and temporal resolution of 

the experimental electrophysiological recordings acquired with CMOS multi-electrode arrays 

(CMOS-MEAs)8,16–18 provided the basis for a faithful implementation and validation of a 

biophysical network model. The extracellular potential variations induced by spiking activity in 

neuronal cultures was recorded at a sub-millisecond resolution with 4096 closely spaced 

microelectrodes (i.e., 42 µm inter-electrode separation). Such a comprehensive access to the 

spiking activity of several thousands of neurons composing the network allowed to quantify mean 

activity parameters finely, to precisely localize the sites of the network where NBs originate and to 

track and classify these spatiotemporal propagations19, thus providing the ground truth for my 

computational model validation.  
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Dynamics of spontaneous spiking activity recorded in neuronal culture 
networks 

 

As previously introduced, neuronal cultures represent a versatile reduced model for the 

investigation of complex network dynamics based on the current recording capabilities, see Fig 

2.1A. An intriguing aspect is the capability of these networks to self-organize and to generate a 

rich repertoire of spontaneous network-wide propagations of spikes interleaved with periods of 

sparse spiking (or “all or none network activations”), see Fig 2.1B. Briefly, embryonic rat 

hippocampal neurons were seeded on high-density CMOS-MEAs at a density of ≃1600 cell/mm2. 

After 20 – 24 Days In Vitro (DIVs), extracellular voltage traces of the spontaneous activity in the 

network were recorded for periods of 10 minutes. Once acquired, these raw traces were analyzed 

off-line upon a first step aimed at detecting and extracting the timings of the action potentials. To 

do so, we used algorithms implemented in the BrainWave software (3Brain AG, Switzerland) and 

custom Python scripts that I developed to visualize and to quantify different features of the spiking 

activity of these networks. In the next sections, I will shortly summarize the main properties of the 

spontaneous spiking activity unveiled by high-density multi-electrode array recordings in in vitro 

neuronal networks of hippocampal neurons. 

All or none network activations 

In Fig 2.1B I report two Illustrative raster plots of network bursts showing the typical “all or 

none activity” that is observed after ≃20 DIVs. As shown, either neurons fire a few and 

uncoordinated spikes, or they are in large majority collectively active for a few hundreds of 

milliseconds. Coordinated network-wide activations are here referred as Network Burst (NB), 

whereas with “quiescent periods” I define those intervals of asynchronous firing observed in 

between two consecutive NBs. On the timescale of 100 ms, almost all neurons in the network fire 

sequences of a few spikes at a high rate (≃ 100 Hz), making these events easy to detect by setting 

a hard threshold on the mean firing rate of the entire population. During quiescent epochs, 

neurons fire action potentials at a significantly low rate (≃ 0.1 Hz). It is important to highlight that 

previously published works have shown that NBs are not simple, coherent synchronizations of 

neurons, but are rather characterized by a much richer dynamics. In particular, by reordering the 

electrode channels in the raster plots (see Annex I – Large-Scale Recordings) it is possible to 

observe a significant delay among the spikes recorded at different sites during an NB, see Fig 2.1C. 

Importantly, such delay correlates with the position of the recording electrode in the array, thus 

already indicating the presence of a propagation of spiking activity (see next section). Even 

though, this network bursting dynamic slightly changes as the cultured neurons grow, it remains 

stable for several hours, that is much more than the observation period of a recording (10 min). 

Furthermore, although the wiring in cultured neurons varies from one to another cell culture, after 

maturation they always exhibit a network bursting regime. 
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Tracking and classifying network bursts propagations 

High-resolution recordings revealed that these propagations of spikes during NBs follow 

precise and stereotyped spatio-temporal patterns that can be easily classified and grouped in a 

few classes. The first-step approach that was proposed reduces the dimensionality of each NB 

propagation by computing the weighted mean position of the spiking activity over time. This 

method is referred as the Center of Activity Trajectory (CAT)20 and allows to visually represent the 

propagation patterns of the NBs (an example is shown in Fig 2.1D).  
 

 
 

Fig 2.1: High-resolution recordings of the spontaneous activity of hippocampal cultures at mature stage 

(19-21 DIVs). (A) View of the CMOS-MEA cell culture well, with a matrix of 64x64 electrodes that collects 

extracellular signals from neuronal cultures grown on-chip. Three illustrative recorded traces displaying a 

transient variation of the extracellular voltage, or action potentials (spikes). Black bars mark all the 

detected spikes that, in this case, are part of a network burst (NB). As shown on the activity map (i.e., 

color-coded representation of the extracellular voltage for the 64x64 recording electrodes) the different 

timing of neuronal activations depends on the position of the electrodes in the matrix. (B) Raster plot 

depicting the spontaneous spiking activity of hippocampal cultures in a 40s snapshot. NBs consist of giant 

network depolarization lasting few hundreds of milliseconds. The blue line (array-wide spike count over 

5ms time windows) highlights the simultaneous activation of neurons during one of these events. (C) A 

closer look at two NBs reveals different propagations of the spiking activity for the two events, as it can 

be better appreciated (D, time of the propagation is color-coded) by the analysis of their Center-of-

Activity Trajectory, CAT. The two consecutive NBs depicted in (C) exhibit different propagations as also 

indicated by (E) the cross-correlation matrix of NBs. (F) NBs can be clustered in a few classes of similar 

NBs upon their reordering with a hierarchical clustering method. 

 

The analysis of CATs shows that once cultured networks are formed, they give rise to a limited 

set (less than 10) of NB propagation classes (i.e., an “alphabet of a few letters”19) as highlighted by 

the cross-correlation matrices in Fig 2.1E,F. The persistence and recurrence of the same pathways 
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of propagation along time suggested us that the circuitry underlying the initiation and propagation 

of NBs rely on built-in properties of the formed network. In particular, only a few areas (or “hot 

spots”) of the network, specific to each class of NBs, contribute to the ignition of these events and 

the network endows reliable and robust pathways for their propagation throughout the network. 

Importantly, as shown in Fig 2.1F, NBs of a given class of propagation repeat several times during 

the recording, without a particular temporal structure of repetition, see Fig 2.1E.  

Comparison of spontaneous activity recordings of low and high-resolution 

platforms 

Conventional passive low-resolution MEAs and active high-resolution CMOS-MEAs are radically 

different devices. They integrate electrodes with different sensitivities to extracellular signals. 

Further, they feature different surface topologies that might impact on the network formation and 

thus on the expressed activity. Therefore, as a first step, I was interested in comparing the 

statistics of the spiking activity recorded with electrodes from neuronal cultures grown on these 

two different types of devices, while maintaining the same and well-controlled cell culture 

conditions. Although high-resolution MEAs are available since a few years8,18, a quantitative 

comparison of the spiking activity acquired with passive and active platforms was still missing. 

Moreover, this first part of my study allowed evaluating the pros and cons of the metrics 

computed on the experimental data that were then successively used to develop my data-driven 

computational network model.  

To perform this study, we recorded neuronal activity from cultures grown on 60 electrode 

array passive MEAs (from Multichannel Systems, Germany) and on 4096 electrode array CMOS-

MEAs (from 3Brain AG, Switzerland). Briefly, the passive MEAs used in this study consisted of 

arrays of round recording electrodes of 30 µm in diameter and arranged in an equispaced grid 

covering a recording area of approximately 2.6 mm2. Further, the electrode material was TiN. This 

electrode material provides a rough electrode surface that contributes to increasing the real 

electrode area, thus reducing the electrode impedance and increasing the electrode sensitivity. 

For these devices, the electrical activity of several neurons positioned in the neighborhood of each 

electrode can contribute to the extracellular potential recorded by every single electrode.  

On the other side, high-resolution CMOS-MEAs provided a recording area of 2.7 mm2 and 4096 

square electrodes of 21 µm x 21 µm in sizes with an electrode pitch of 42 µm. Unlike passive 

devices, the squared electrodes of our CMOS-MEAs are embedded by 2 µm into the top insulator. 

This different electrode morphology of CMOS-MEAs is supposed to confine the sensing area of 

each electrode to a smaller sensing region than passive devices although the rough platinum 

electrode coating increases the electrode sensitivity.   

 

Analysis of low and high-resolution recordings 

At the time-scale of seconds, the spontaneous network spiking recorded from cultures at a 

similar age (19-21 DIVs) looks qualitatively similar in both recordings acquired using the two MEA 

devices, see Fig 2.2. Indeed, both conventional (Fig 2.2A) and high-resolution recordings (Fig 2.2B) 

exhibit network-wide synchronizations interleaved with quiescent recovery epochs characterized 
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by sparse and asynchronous spiking. However, the quantification of first-order spiking statistics 

revealed some discrepancies and in particular in the burst activity parameters, see Fig 2.2C. To 

detect a burst of action potentials within the spike trains recorded by a single electrode, I used a 

conventional definition of bursts, that is a sequence of at least Nspk=5 whose interspike interval 

smaller than ISImax=100 ms. 

Specifically, in high-density CMOS-MEA recordings, a smaller set of electrode channels (30-

40%) recorded bursts of action potentials and, consistently with the latter quantification, the 

number of spikes that were not belonging to a burst (or Random Spikes) was close to the whole 

amount of detected action potentials, see Fig 2.2D.  
 

 
Fig 2.2 Qualitative and quantitative comparison of the spontaneous activity in low (60 electrodes MEAs, 

60-MEA) and high resolution (4096 electrodes CMOS-MEA) recordings. (A) Raster plots of a 60-MEA 

recording and of (B) a 4096 CMOS-MEA recording, both of 30 s showing several NBs. (C) First-order 

statistics of the analyzed parameters, i.e., Mean Firing Rate (MFR), Mean Bursting Rate (MBR), Mean 

Frequency Inter-Bursts (MFIB), Mean Burst Duration (MBD) for n=6 cultures CMOS-MEA and n=5 cultures 

60-MEA. (D) Percentage of random spikes and electrode channels detecting at least one burst for the two 

devices. *p=0.01, t-test. 

 

Single electrode channel bursts during network bursts 

As reported in the previous paragraph, the higher percentage of random spikes detected in 

high-resolution CMOS-MEA recordings indicates that a smaller fraction of electrodes detects long 

sequences of densely packed spikes. Consequently, to identify NBs in high-resolution CMOS-MEA 

recordings, one cannot rely solely on the spike trains of individual electrodes. Given this 

observation, a deeper comparative analysis of datasets acquired with the two devices was 

performed by looking at single electrode spike-trains on the two devices. In an illustrative 
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snapshot (Fig 2.3A-B), I highlight with red dots the burst detected during two NBs and recorded 

from different cultures grown on low and high-density devices.  

 

 
 

Fig 2.3: A closer look at network bursts and single-channel bursts for low and high-resolution recordings. 

(A) Raster plot of 1s of activity displaying a single NB a 60-MEA recording and (B) multiple NBs for a 

CMOS-MEA recording. The red dots indicate those spikes accounted for a burst using classical definition. 

Note that spikes accounted as a burst in the CMOS-MEA recording are not clustered into a single NB. 

 

Interestingly, the spikes belonging to a burst recorded with the CMOS-MEA belongs to 

different NBs tightly packed together (named superburst1). Hence, by decomposing superbursts 

into single NBs, the comparative analysis revealed that the number of spikes recorded during a 

single NB is remarkably smaller for high-density MEAs compared to conventional MEAs, as 

quantified in Fig 2.4A. Specifically, the distribution of spikes belonging to NBs in 60-MEA 

recordings revealed a much flatter profile and included a significant fraction of long sequences of 

consecutive spikes (up to 17 per single electrode channel). Consequently, single network events 

recorded with high-resolution CMOS-MEAs are composed of a small fraction of electrodes that are 

in a bursting state, see Fig 2.4B.  

 

 
Fig 2.4: Spike count per electrode channel composition of network bursts. (A) The occurrence of the 

number of recorded spikes during NBs for passive and active devices. (B) Single network burst recorded 

with CMOS-MEA reveal a few electrodes recording burst (red dots) while the more substantial part of 

electrode record less than five spikes (black dots). Note that an NB consists of the subsequent activation 

of neurons in time that contributes to a few spikes. 
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Discussion 

Our analysis shows that NBs recorded with the CMOS-MEA are composed mainly of a few 

spikes (less than three). Importantly, while network bursts characterize a network phenomena 

consisting in the sequential activation of neurons, the MBR is a quantity defined on a single 

electrode basis and then averaged over the active electrodes in the recording. As the MBR is 

affected by electrode sensitivity, the down-sampling of the electrode grid used to decrease the 

spatial resolution of CMOS-MEAs resulted, as shown in another published experimental work21, in 

a higher variability of the MBR, which can potentially be explained by the fact that only a few 

electrodes are actually recording single-channel bursts.   

Importantly, although single electrode channels participate to a network burst with a few 

spikes, the propagation of these action potentials determines an up-state of the network lasting 

much longer than the activation of a single electrode channel. Specifically, the subsequent 

temporal occurrence of a few spikes fired by neurons in different spatial locations of the network 

is coherent with the interpretation of NBs as a propagation of action potentials across the culture, 

rather than a synchronous phenomenon.  

Several aspects might explain the different outputs of the two platforms. First, different 

sensing properties characterize the electrodes of these devices, from the dimension up to the 

shape. Specifically, round and planar electrodes characterize conventional passive MEA whereas 

the electrode in CMOS-MEA the electrodes are squared and below the plane of the chip. These 

different configurations influence the portion of the extracellular space sensed by the electrode. 

Given the result of this exploration, squared and below-plane electrodes seem to provide a more 

confined region of sensing than circular ones. Besides geometric considerations about the shape 

of the electrodes, also the reduced electrode area of CMOS-MEA (21 µm x 21 µm) in respect to the 

conventional MEA (30 µm diameter) used can favor the sensing confinement to the dimension of a 

single soma. Second, the definition of a burst with the same threshold on ISImax for all electrode 

channels might be too restrictive22. However, the parameter exploration by varying the ISImax 

shows that this difference persists even for the lowest ISImax23. 

A biophysical computational network model of hippocampal cultures  
 

High-resolution electrical recordings provide a detailed picture of the spiking activity in entire 

networks of cultured neurons19. This technology can be combined with optical microscopy and 

biomolecular tools to acquire structural and functional information to gain insights on network 

development, its organization and to study responses induced by a wide range of stimuli, 

pharmacological manipulations or toxic insults24. However, even though the constantly increased 

experimental resolution of the technologies used to acquire structural and functional data in 

neuronal systems, a full detail description of networks at the cellular and sub-cellular scales 

remains inaccessible also in the case of these reduced experimental models.  

As previously introduced, a possible approach to overcome current limitations to estimate 

experimentally hidden variables consists in combining biophysical data-driven computational 

network modeling with experimental research. The computational model developed in my work is 

based on a set of 4096 adaptive exponential integrate and fire neurons25, including both excitatory 
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and inhibitory neurons (see Annex I – Computational network model for an extended description). 

In the model, each neuron receives independent Poisson inputs that generate subthreshold 

fluctuations of the membrane potential and lead to asynchronous spiking activity in an uncoupled 

network. The three most important chemical synapses, equipped with short-term plasticity 

mechanism26, specifically AMPA, GABA and NMDA, mediate the interaction among neurons. The 

central assumption in this biophysical model regards the neuronal connectivity within the 

network. Consequently, as described in the next section, I first had to explore several biologically 

plausible models of connectivity to assess which one best fitted experimental observations 

obtained from networks.  

Testing biologically plausible models of network connectivity 

Each neuronal culture grows and forms a new network with an unpredictable connectivity 

among the neurons. To overcome this source of heterogeneity, several groups attempted to drive 

the network connectivity towards predefined patterns as grid27 or compartmentalized28 networks 

or favoring the growth of local clusters29. However, irrespective of the different conditions, cell 

cultures always express similar dynamics and changes in the activity along their development.  

While the study of these neurodevelopmental rules giving rise to such a reproducible 

development of ongoing activity in neuronal networks is very intriguing, my work aimed to identify 

assumptions on the network connectivity useful to implement a network model of formed 

networks capable of reproducing the statistical properties of the spiking activity recorded in our 

experiments. In this regard, to assess which assumption on network connectivity can truly mimic 

experimental recordings, several models of network topology were challenged to reproduce the 

salient qualitative characteristics of the spontaneous activity of a neuronal culture, see Fig 2.1. 

This was an essential step in our biophysical computational model development because different 

network topologies lead to significant differences in the simulated network spiking activity that 

could also be radically different from the experimental one.  

In order to define the connectivity graph of our network model, the neurons were placed on a 

unitary square area, corresponding to the active area of the CMOS-MEA, with a uniform spatial 

distribution. In Fig 2.5A, I report illustrative representations of different network topologies 

considered in this study. To simplify the visualization, I considered small networks of 40 neurons at 

fixed positions, while the connectivity was modified according to the rules defining each tested 

network topology. The directionality of the synaptic connections between pairs of neurons was 

assigned with equal probability. Although bidirectional connections are quite common in the 

brain, computer simulations have shown that networks with only depressing synapses (as 

assumed in this work) tend to evolve unidirectional connections26. For the different connectivities 

we considered the following theoretical network models: 
 

Random Graphs (RANDOM): the connection probability is predefined a priori. Links among 

all possible pairs of neurons are sampled uniformly with a predefined probability30. 

Consequently, the network connectivity is independent of the spatial arrangement of 

neurons. 
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Preferential Attachment-node degree Graphs (PAnd): an iterative procedure constructs 

the network: at each step, the algorithm inserts a new node into the network (i.e., a 

neuron) with a predefined amount of M edges (i.e., synapses). This neuron attaches 

preferentially to the nodes with the highest degree available in the network at that specific 

step31. 

Preferential Attachment-position Graph (PAp): As in the preferential attachment model, at 

each step, a new node is added to the network and attached to the M-closer nodes32. 

Preferential Attachment-position-node Graph (PAndp): In this preferential attachment 

graph model, the preference of link attachment is balanced equally33 between the distance 

(PAp graphs) and node degree (PAnd). 

Gaussian Graphs (GAUSS): the connection probability depends only on the Euclidean 

distance between pairs of neurons and decays as a radial Gaussian function34. 

Radius Graph (RADIUS): each pair of neurons lying within a predefined radius of 

interaction connects to each other35. 
 

The outcome of this preliminary computational study on the effects of the different tested 

network topologies revealed that the spontaneous spiking activity is strictly related to the 

organization of the network connections. These connections affect not only the propagation of the 

coordinated spiking activity in the network (Fig 2.5C), but also the distribution of the firing rates in 

the network (Fig 2.5B).  

 

 
Fig 2.5: Network activities for different topologies compared to experimental recordings (EXP). (A) 

Different network models induce different topologies over the same arrangement of neurons in a unit 

square as indicated by the small representative networks (40 neurons).  (B) Firing rate distributions, (C) 

spatial distribution of the firing rates and (D) representative CATs. In the random graph, the activity 

spreads homogeneously and quickly across the whole network (first column). In the radius graph, the 

CAT propagates slowly across the network compared to the experimental data (bottom column). Finally, 

in the Gauss graph (third column) the CAT compares well with the corresponding experimental ones. The 

better matching of the CATs is also reflected in the firing rate distributions when compared to 

experimental ones (E). 
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In particular, RANDOM networks elicit short-ending network burst (NB) with no clear spatial 

propagation of spiking activity since their topology does not take into account the position of the 

neurons in the network. This observation derives from the fact that the center activity trajectory 

(CAT) of each NB rapidly converges to the center of the network. Moreover, the firing rate 

distribution of these networks has a binomial shape profile and is spatially uniform. A similar 

argument holds for the trajectories of NBs elicited by PAnd network models. Indeed, in PAnd the 

CATs converge also rapidly to the center of the network since, similarly to the random graphs, the 

connectivity disregards the spatial arrangement of the neurons. Consequently, to simulate natural-

like propagations, the connectivity should depend on the distance among neurons. Position-based 

PA networks (PAp and PAndp), indeed, can express propagations of spiking activities in our 

simulations. However, the presence of active hub neurons characterizing these models induces 

too many turning points in the propagation (suggesting a hub by hub propagation of spiking 

activity) that differ from experimentally observed propagations. Additionally, the distribution of 

the simulated firing rate at these “turning” locations exhibits bumps of high firing activity in only a 

few spatially segregated regions of the network while a significant fraction of the neurons remains 

silent (dark blue regions) and, thus, do not participate to NBs. Conversely, RADIUS networks give 

rise to prolonged propagations of spiking activity due to the lack of shortcutting connections. 

According to the network architecture, the spatial distribution of the firing rate density in regions 

where neurons are more connected due to spatial density inhomogeneities of synaptic contacts 

while, regardless of the spatial position, the firing rate distribution has a flat profile. 

The network burst propagation and the spatial firing rate maps (Fig 2.5B-C) induced by GAUSS 

graphs, instead,  exhibited a good match with the experimental data (Fig 2.5, last column), albeit 

position based PA networks approximate slightly better the experimental firing rate distribution 

than Gaussian graphs, as quantified by the Kullback-Leibler divergence, see Fig 2.5E (0.62±0.12 vs. 

0.84±0.23 respectively). Beyond these qualitative assessments, GAUSS graphs can also 

quantitative reproduce the time scales of NBs and the firing rate distributions observed in our 

experimental data, as reported in the next section.  

 

Discussion 

The comparative analysis of the performance of different theoretical network models 

indicated that position-based graphs mimicked the spontaneous spiking activity significantly better 

than networks whose connectivity was unrelated to the spatial arrangement of the neurons. 

However, by restricting the field of interest to position-based graphs, the lack of long-range 

connections in radius graphs determined slower spatial propagations (≃38 mm/s) of spiking 

activity than the ones observed in experimental recordings (≃146 mm/s) and, consequently, gave 

rise to longer duration of NBs (Mean Bursting Duration of 572.32±32.76 ms vs. 126.27±45.84ms).  

Instead, both preferential attachment position based models and Gaussian graphs provided 

the best match to the experimental data. However, while these preferential attachment models 

imposed an hub-like structure, Gaussian graphs replicated experimental observations without the 

implicit need for a hub architecture. In this regard, previously published works36,37 already 

reported a major network connectivity contribution in favoring the emergence of network 
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synchronizations. Specifically, the features characterizing small-world38 and scale-free31 network 

models could provide a posteriori functional explanation for the spontaneous synchronization of 

spiking activity39 and several computational works set the network connectivity based on these 

assumptions40. However, as suggested in41,42 the small-world properties are inherited by the fact 

that neuronal connectivity depends on the distance between neurons rather than imposed as a 

priori model40,43,44.  

Furthermore, experimental data obtained with optical microscopy and immunostaining on 

low-density neuronal cultures suggest that neuronal connectivity in formed networks depends on 

the reciprocal distance among neurons45. On the other hand, to keep a minimal network 

connectivity model, complex approaches as growing networks46 or detailed neuronal 

arborisation47, although tempting, were not taken into consideration due to their intrinsic 

computational complexity.  

Therefore, network models with Gauss graph connectivity provide the best compromise to 

reproduce our experimental observations and were used to develop our computational model. 

Assessment of simulated versus experimentally recorded spiking activity 

In the previous section, I have shown that network models with Gauss graph connectivity 

provide the best compromise to reproduce qualitatively the experimental observations. Here, I 

further investigated the statistics of the spiking activity expressed by this computational network 

model and compared the outcomes of the analysis with our experimental recordings. Indeed, for 

experimental recordings in neuronal cultures, the spike-sorting analysis performed in our 

laboratory has shown that we can consider that the majority of each electrode records spike trains 

from a single unit.  

The visual inspection of simulated raster plots reveals a similar network-wide spiking activity 

(Fig 2.1B vs. Fig 2.6A) and a comparable timescale of NBs propagations (72±28ms, Fig 2.6B) to the 

experimental data (65±33 ms, Fig 2.1C). Interestingly, the results show that in the simulations, as 

in the experiments, each class of NB consists of a sequential activation of neurons depending on 

their spatial position, see Fig 2.6B, with a propagation speed estimated in ≃146 mm/s and ≃128 

mm/s for experimentally recorded and simulated NBs respectively.  

Moreover, CATs computed on simulated data display smooth trajectories similar to the 

experimental ones19 (Fig 2.1D vs. Fig 2.6C), and, notably, the classification of these spatiotemporal 

patterns (Fig 2.6D-E) reveals only a few clusters of trajectories (Fig 2.6F), with no evident periodic 

sequence, as depicted in Fig 2.6D. As shown previously, the same analysis performed on 

experimental data revealed the presence of a few clusters of trajectories, see Fig 2.1F-G. 

Additionally, the quantitive comparison between experimentally (n=15) and simulated (n=20) 

network statistics, i.e., mean firing rate (MFR, 0.51±0.34 vs. 0.42±0.28 Hz, respectively, p-value 

0.27), mean bursting rate (MBR, 2.03±1.29 vs. 1.89±0.93 burst/min, respectively, p-value 0.97), 

mean firing intra-burst (MFIB, 122.53±35.84 vs. 106.89±51.93 Hz, respectively, p-value 0.35) and 

mean burst duration (MBD, 126.27±45.84 vs. 112.42±32.93 ms, respectively, p-value 0.95) further 

confirms these qualitative observations, see Fig 2.6G. Importantly, different simulations obtained 

by little perturbations of the cellular properties (i.e., the parameters defining the behavior of the 
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simulated neurons) and different anatomical networks based on the Gauss graph lead to 

variability in the network descriptors similar to the one resulting from different experimental 

recordings. All in all, the simulated spike trains recapitulate most of the salient properties of 

hippocampal cultures observed in our recordings and already reported in some previous 

studies1,48,49. 

 
 

Fig 2.6: Spontaneous spiking activity of simulated and experimental neuronal culture networks. (A) Raster 

plot of the simulated spontaneous spiking activity showing sporadic NBs interleaved by sparse spiking as 

occurs in experimental recordings Fig 2.1B. (B) Magnification on the first two simulated NBs in A reveals 

specific spatio-temporal patterns of neuronal activation, c.f. Fig 2.1C. By applying the same tools of 

analysis designed for experimental recordings, the cross-correlation matrix of simulated NBs (D) reveals 

similar a-periodic sequences of similar trajectories (c.f. Fig 2.1E,F). The classification of CATs (F) according 

to the reordered cross-correlation matrix (E) indicate the presence of common ignition sites (circles) of 

propagation and preferential pathways of propagation through the network. (G) Mean quantitative 

statistics, i.e., firing rate (MFR), bursting rate (MBR), firing intraburst (MFIB) and burst duration (MBD), 

recapitulate the value and the variability of the experimental ones (n=15 experimental recordings, n=20 

simulations, p-values 0.27, 0.97, 0.35, and 0.95, respectively). 



47 
 

Manipulation of synaptic transmission: model validation and effects on 
network dynamics 

 

Although I have shown that the computational network model can generate synthetic 

network-wide spiking activity with properties that are both qualitatively and quantitatively 

comparable to neuronal culture recordings, we further validated its responses to pharmacological 

manipulations that are known to alter the network firing regime. Hence, to explore the capability 

of reproducing different network spiking regimes, the network model was challenged to mimic the 

firing activity of neuronal cultures subjected to pharmacological manipulations of the three 

synaptic receptors endowed in the model, namely AMPA, GABA, and NMDA.  

The contribution of AMPA, GABA, and NMDA to the network spontaneous activity was 

explored through simulations and by cross-validating our simulated data with experimental 

recordings that were either acquired in our laboratory or that were reported in the literature. 

AMPA  

Previous computational modeling works44,50 on networks endowed with AMPA and GABA 

synapses (or AG-networks) reported that AMPA and GABA conductances are sufficient to 

reproduce the essential features of the spontaneous spiking activity expressed by neuronal 

cultures. This includes the sporadic initiation of NBs. As previously shown, our network model, 

that includes both AMPA and GABA synapses, also reproduces these dynamics.  

Importantly, experimental works51,52 indicated that a decrease in AMPA efficacy upon 

pharmacological treatments with CNQX (a selective blocker of AMPA receptors), induced a 

diminished network bursting activity and eventually the complete silencing of the bursting activity. 

Here, to elucidate the effects of the AMPA conductance on the generation of NBs, a similar 

experiment was performed in silico. To do so, the magnitude of the AMPA conductance was 

linearly decreased, and changes in the spiking activity were evaluated by computing the firing rate 

and the percentage of random spikes, i.e., those spikes not belonging to a burst. To ensure a fair 

comparison among networks with different AMPA conductances, GABA inhibition in these 

simulations was unaltered. The simulations revealed that reducing the AMPA excitations pairs 

with a diminished spiking activity of the network, see Fig 2.7A. Specifically, we found that a 

reduction higher than 25% decreased the mean firing rate of the network from 0.92±0.23 Hz to 

0.12±0.06 Hz and prevented the network from exhibiting NBs (Fig 2.7B, black dashed lines, n=10). 

Indeed, for more significant reductions of the AMPA conductance, the percentage of random 

spikes approached 94.45±5.34 %, i.e., the totality of the spikes expressed by the network (Fig 2.7B, 

red dashed lines, n=10). The inclusion of NMDA excitatory conductance in the model (or AGN-

network, Fig 2.7B, black lines, n=10) was found not to alter the overall qualitative trends observed 

by changing the AMPA conductance in AG-networks. However, we concluded that under low-

AMPA conditions (<20% respect to basal condition), the addition of NMDA currents could partially 

compensate for the reduction in AMPA excitation (Fig 2.7A, B, solid lines). Indeed, for a 30% 

decrease in AMPA conductance, the spiking activity of the AGN-networks became very sparse, 

with rare single-channel burst 4.45±1.43% and interspike intervals (ISIs) of several seconds, on 
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average 7.23±1.23 s (Fig 2.7C, red distribution). Conversely, in AGN-networks under control 

condition (i.e., 0% decrease in AMPA conductance), the ISI distribution (Fig 2.7C, blue line) showed 

both short (<100 ms) and long (>500 ms) ISIs, thus indicating the presence of NBs interleaved with 

periods of asynchronous spikes. Importantly, the shift from uncoordinated to coordinated firing 

regimes in neuronal networks requires homeostatic changes in AMPA conductances53 that are 

comparable to the one identified through our simulations.  

 

 
 

Fig 2.7: A computational exploration of AMPA synaptic transmission in modulating the spiking activity of 

neuronal cultures. (A) Mean firing rate (MFR) for decreasing values of AMPA conductances in networks 

endowed with AMPA and GABA conductances only (solid line, AG-networks), and with the additional 

contribution of NMDA conductance (dashed lines, AGN-networks). (B) A decreased efficacy of AMPA 

synapses determines a diminished mean bursting rate (MBR) together with an increased percentage of 

random spikes. (C) The ISI distribution in a low AMPA conductance scenario exhibits a single peak 

centered on intervals lasting several hundreds of milliseconds, while in control condition the envelope of 

the ISI distribution reduction displays an additional peak centered on a few millisecond timescale. The 

missing peak indicates that single neuron bursts do not occur along the simulation and consequently 

neither network bursts. 

GABA 

Our recordings8 and other reported experimental works54,55 show that the blockage of 

inhibitory transmission mediated by GABA unalters network bursting regime in neuronal cultures, 

but rather modulates the dynamic. We have verified this condition in our computational network 

model by setting the conductance of all inhibitory connections to zero, (GABA-OFF, n=5). The lack 

of the regulatory function of inhibition causes epileptic-like spiking activities characterized by 

more frequent (+88±5% increase of MBR), densely packed, (+56±4% increase of MFIB) and fast 

propagating NB (-29±4% decrease of MBD)  compared to control condition when the GABA 

conductances are active, see Fig 2.8A. Moreover, upon blockage of inhibition, single neurons 

participate in an NB with a consistently higher number of spikes (8.23±1.78 spikes, Fig 2.8A, inset) 

than observed under control conditions (3.97±1.03 spikes, GABA-ON). The predictions of the 

model agree with experimental observations (+110±9% increase of MBR, +50±1% increase of 

MFIB, -18±2% decrease of MBD) obtained with pharmacological manipulations of the cultures 

(under 30 μM Bicuculline, a competitive antagonist of GABAA receptors), thus confirming the 

reliability of the model, see Fig 2.8B. Note, though, that our computational exploration exhibited a 

much richer dynamic than previously observed56. Indeed, an analysis of the NB clusters (based on 
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their trajectories) in the GABA-ON/OFF conditions, revealed that by blocking GABA we could 

distinguish NB clusters with trajectories that appeared predominantly in control condition, in the 

GABA-OFF condition or that were insensitive to the removal of inhibition and consequently 

appeared along all the simulated experiment, see Fig 2.8B-C. Finally, it is also possible to note that 

upon blockage of inhibition, the trajectories within a given cluster exhibited a reduction  of ≃20% 

in the mean path variance and less convoluted pathways, as a consequence of the higher 

intraburst firing rate and of the shorter NB duration that contributes to better define the NB 

trajectory, see Fig 2.8D. Importantly, the appearance of new ignition sites and a new cluster of 

trajectories under the GABA-OFF condition is also consistent with previous experimental 

investigations56. 

By exploiting the model, we could investigate the underlying mechanisms of these variations in 

the network dynamics. Indeed, the model under GABA-OFF condition indicates that an increased 

and almost simultaneous excitation due to the lack of an inhibitory counterpart determines a 

higher integration of synaptic inputs and an increased neuronal firing during NBs. As consequence 

of the increased firing, both neurons, and synapses are more strongly depressed during an NB, 

thus shortening the time-window in which the membrane potential is sufficiently depolarized to 

induce firing.  

.  
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Fig 2.8: The role of GABA inhibition on network bursting dynamic and propagation. Inhibition-ON (black, 

control) and inhibition-OFF (red, blockade of inhibition gGABA = 0). (A) The model predicts the changes in 

spiking statistics observed in experiments (P-values: 0.052, 0.473, 0.189, 0.449, t-test independent, n=4 

experimental recordings, n=5 simulations). By blocking the inhibition, the spike count per neuron during 

NBs displays a shift toward higher values (inset). (B) The matrix of CATs does not show abrupt changes 

across the GABA-ON (black square) and GABA-OFF condition. (C) Clustering analysis of the CATs in GABA-

ON/OFF phases. Most of the CAT clusters are populated by NBs of the two phases while some clusters 

are representative of the GABA-ON phase (e.g., cluster IDs 0, 2) and others of the GABA-OFF phase (e.g., 

cluster IDs 16, 17). The Gaussian curves are determined by fitting Gaussian Mixture Models and 

minimizing the Akaike criterion. (D) The CATs clusters that appear exclusively during the GABA-ON or 

GABA-OFF phase (mean: thick line; standard deviation: shaded area). In GABA-OFF condition, the 

trajectories are more regular (mostly straight lines) and stereotyped (lower variance). 
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NMDA 

Finally, we investigated also the effects induced by modifying NMDA synaptic currents in 

mediating the entire network spiking activity of our computational model. As shown in this 

section, the addition of NMDA receptors in the model supports long-lasting depolarizations of the 

membrane potentials that can eventually lead to sequences of NBs separated by a few hundreds 

of milliseconds, also referred as superbursts, see Fig 2.9A. This latter evidence was also supported 

by experimental data that showed a significant increase of single NBs from ≃8% to ≃80 upon APV 

(a NMDA antagonist) administration, i.e., a disappearance of superbursts (Fig 2.9A, middle and 

bottom panel). 

The characteristic longer time-scale of the NMDA excitation57 respect to other dynamics taking 

place in the modeled synapses and neurons suggests it could be a good candidate to trigger a 

chain of sequences of NBs named superburst1. This consideration is confirmed by a few 

observations. First, in previous investigations, the time interval separating two NBs in a 

superburst, lasting a couple of hundreds of milliseconds, was found comparable to the additional 

excitation provided by the integration of NMDA currents. Second, the contribution of the NMDA 

current depends on the relative value of the magnesium block potential (VMg) respect to 

membrane potential (Vm) of the impinged neuron. Whenever Vm<VMg, the contribution of the 

NMDA current is negligible (shunted), and it becomes quite relevant once Vm>VMg. Consequently, 

these observations indicate that a proper balance between the adaptation of the membrane 

potential and the activation of NMDA currents can faithfully trigger a sequence of NBs, right after 

the end of another one.  

In our simulations, incorporating the NMDA synapses (AGN-network), the model replicated 

qualitatively (i.e., respect to experiments) the suberbursting patterns without any parameter 

adjustment, see Fig 2.9B. Specifically, we found that the additional excitation provided by NMDA 

currents provide the driving force to trigger chains of consecutive NBs and the magnesium block 

ensures the closure of the chain of NBs once the spike-triggered adaptation current overcomes the 

contribution of synaptic currents.  

Similar to experimental recordings, in our simulations, the blockade of the NMDA (mimicking 

APV application) causes the disappearance of superburst, i.e., sequences of NBs separated by less 

than ≃500 ms as quantified in Fig 2.9C. The disruption of the superbursting regime is also 

highlighted by the disappearance of the peak (solid arrow) at 200 ms (left) and 1000 ms (right) in 

the ISI distribution and in the difference of ISI distribution, see Fig 2.9D. The mentioned peaks, 

indeed, represents the firing between consecutive NBs in the superbursts and between 

superburst, respectively.  It is important to note that the excitatory drive of NMDA receptors can 

also work synergically with other mechanisms that include, but are not limited to, the 

asynchronous release of neurotransmitters58, actively facilitating synapses59 but also reverberating 

spiking activities on the boundary of the cultured neuronal network60. Thus, there could be other 

potential mechanisms contributing to the sustainment of the superburst regime, but our work 

suggests that the NMDA conductance is fundamental to sustain the latter firing regime.  
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Fig 2.9: The NMDA receptor is involved in the generation of superbursts. (A) Consecutive NBs are clearly 

visible in some experiments (blue line is the spike count over 10 ms time windows) and disappear 

gradually as the concentration of AP5 (a NMDA receptor blocker) provided to the culture increases 

(bottom panel). (B) By varying the efficacy of NMDA receptors (𝑲𝑵𝑴𝑫𝑨) the model mimics the different 

concentrations of APV (i.e., the raster plots of the simulations are in good matching with experiments). 

(C) In a NMDA-free condition (under APV), the network is characterized by single NBs both in 

experiments (n=3) and AG-networks (n=10). (D) The firing pattern of the superburst regime (black 

distribution, n=10 simulations) is characterized by three peaks in the ISI and dISI distributions.  

Other mechanism of neuronal interaction 

In addition to chemical synaptic signal transduction, gap-junctions can also potentially mediate 

the initiation and the propagation of spiking activity within a neuronal network61, as it occurs in 

the proliferative ventricular zone of a developing neocortex9. However, neuron gap-junction 

hippocampal neuronal play a minor role in modulating the spiking activity at mature stage62 and 

further evidence also suggest that neuron to astrocytes intracellular communication is not 

essential for eliciting spontaneous network bursts63. These results were of particular interest in 

the design phase of the network model because they allowed reducing the elements to simulate. 
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Extrasynaptic signaling 

Alternative mechanisms that might impact on the network spiking activity regard the 

activation of extrasynaptic receptors. For instance, previous works observed neuroprotective 

benefits induced by the activation of extrasynaptic NMDA receptors upon administration of low 

concentrations of NMDA (less than 200 nM)64,65. Despite the pros of the network model reported 

so far and the interesting topic of investigation, the notion of the extrasynaptic receptor is 

somehow undefined in point process neurons that lack any spatially extensive dendritic 

arborization. At the current stage, testing this type of hypothesis is far beyond the capability of the 

network model, and it consequently represents a limitation of this work. However, a first 

exploration about the effect of extrasynaptic NMDA receptors can faithfully be implemented by 

including a phenomenological model of the currents regulated by extrasynaptic NMDA receptors 

and by scaling the strength of synaptic input to compensate for the lack of compartments. 

Dendritic computation 

Cumulating evidence66 shows that neuronal computation benefits of dendritic processing of 

incoming inputs. The dendritic computation is not solely limited to the spatiotemporal integration 

of distinct afferents67, but it also includes the cross-talk among adjacent synapses68,69, thus 

increasing the potential non-linear interactions between different inputs in a neuron. The 

dendritic computation could outperform the processing capability of single cells and represent an 

appealing subject of investigation. Hence, a future direction we envisage is to upgrade the current 

implementation of the network model to spatially extended interacting neurons. 

 

Summary 

The computational investigation of the effects of three major synaptic players included in our 

model (AMPA, GABA, NMDA) to the spiking activity and dynamics expressed in neuronal networks 

revealed that while AMPA receptors are required for the spontaneous expression of NBs, NMDA 

and GABA mainly regulate the dynamics of the network bursting regime. Specifically, in line with 

experimental results and previous modeling works, the blockage of inhibition through GABA 

modulates NBs, but without disrupting their initiation. Indeed, we observed that inhibition 

regulates the duration, the strength, the occurrence of NBs (i.e., the frequency) and the stability of 

the NBs propagation paths. On the other hand, NMDA can support the insurgence of a 

superbursting regime by providing an excitation lasting hundreds of milliseconds that prevents 

single neuronal hyperpolarization at the end of each NBs. Finally, this part of my work allowed also 

to support the value of the implemented model further and to develop knowledge on possible 

mechanisms that might affect experimentally observed changes in the network spiking activity and 

dynamics. The presented network model might be directly applicable to the interpretation of 

experimental recordings of spontaneous activity changes induced by neuroactive compounds or 

may provide complementary information on the integration at the cellular scale of electrical70 or 

optogenetic71 external stimuli.  
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Investigating determinants underlying the spontaneous emergence of 
network bursts 

 

In this section, following the validation of the computational network model, I report results 

obtained by exploiting this model to unveil the potential mechanisms underlying the ignition of 

spontaneous NBs in in vitro neuronal networks.  

Previous published works suggested different potential sources for NB ignition, including local 

network effect induced by single neuronal excitability or intrinsic neuronal properties as intrinsic 

periodic bursting72 of pacemaker neurons46, hub-like network structures in which hub-neurons 

regulate and coordinate the activity of the entire network73,74, and assemblies of neurons in which 

spatially localized sets of neurons initiate the NBs as a consequence of their internal wiring 

structure75,76. My study considered different and potential sources of the spontaneous ignition of 

NBs that were investigated through simulations. In particular, we investigated a set of potential 

mechanisms generating NBs. In particular, we considered: 

(I) The intrinsic excitability of individual excitatory neurons 

(II) Border or finite size effects of the network 

(III) The local network interactions established by neurons 
 

In the following, we will provide a step-by-step analysis of these factors, and we will show that 

although they can contribute to the generation of NBs, they cannot fully explain the emergent 

network activities.  

Intrinsic neuronal excitability 

A first hypothesis is that NBs might be initiated in areas characterized by a higher 

concentration of more excitable neurons than the rest of the network. To dissect a potential role 

of this intrinsic excitability I modified the spatial distribution of more excitable neurons in our 

simulated networks while maintaining unaltered the rest of the network parameters. I quantified 

the heterogeneity of neuronal excitability in the simulated networks by quantifying the single-

neurons input resistances (Rin), i.e., the expected membrane potential depolarization from the 

resting state of the neuron as a consequence of the injection of a current step, according to Ohm's 

first law, see Fig 2.10A-B. The input resistances of all neurons in the network were computed and a 

control simulation provided the ground truth of trajectories elicited by the control network, see 

Fig 2.10C. Next, in order to test the possibility that the excitable neurons could determine 

spontaneous NBs, we populated one area of the network with the excitatory neurons having the 

highest Rin and placing those with the lower input resistance outside of the area. This operation 

occurs by exchanging the parameters of the neuronal models in a one to one correspondence, see 

Fig 2.10D.  

Consequently, the overall distribution of excitability, i.e., Rin, was preserved, conversely the 

spatial distribution of excitability exhibited peaks in the targeted area instead of a uniform profile. 

With this setting, a replication of the control simulation by applying the same initial condition, and 

background noise provided a fair comparison of the spiking activity. Thus, a comparison of the 

CATs, associated with NBs, between the two simulations allowed to inspect whether a new cluster 
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of trajectories could originate from the high excitability area by leaving (almost) unaltered the rest 

of the network. Simulation results show that, while maintaining unaltered the network 

connectivity in the different configurations, the additional spatial clustering of excitable neurons 

gives rise to a different spatial distribution of the spiking activity in the simulated networks. 

Specifically, bumps of higher firing rate were visible by computing 2D-spatial histograms of the 

network firing rate, thus indicating a potential contribution of the localization of more excitable 

neurons in initiating NBs. However, only a few (2 out of 86) new trajectories were elicited by 

altering the neuronal excitability in the network.  

This test leaves open the possibility that either the changes in excitability included in the 

model was not sufficient to induce new NBs, or the number of replaced neurons was too small. 

However, to have a relevant impact on the number of trajectories (10%) consider that we had to 

move at least 25% neurons (not shown).  

 
 

Fig 2.10: Assessing the role of intrinsic heterogeneity in simulated neuronal networks. (A) The input 

resistance is quantified by fitting the steady depolarizations reached (black dot) respect to the injected 

currents. (B) Input resistance distribution for excitatory and inhibitory neurons. (C) Control network, in 

which the excitability is uniformly distributed in the network. (D) New configuration of the network in 

which the most excitable excitatory neurons were spatially clustered in the corner of the network while 

preserving the properties of all the other neurons. 

Border or finite size effects of the network 

To understand to what extent the finite-size effect influences the propagation of activities in 

the network, we performed simulations with a virtually infinite topology by embedding the 

network on a torus obtained by setting periodic boundary conditions among the up/down and 
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left/right borders of the network, see Fig 2.11A. In this setting, a neuron lying close to the 

left/right border can connect to a neuron lying close to the right/left border (Fig 2.11A, red line). 

Similarly, a neuron placed at the bottom/top can connect to a neuron lying close to the 

top/bottom border of the network. With this setting, the model displayed similar dynamics to the 

one observed in the standard network model on the unit square with borders (spontaneous 

propagations characterized by few ignition sites). Similarly to the conventional 2D network, we 

could also perform a cluster analysis on the CATs of the propagating events, see Fig 2.11B. As 

shown in Fig 2.11C these events propagated on the entire torus indicating that these activities 

leave and re-enter the unit-square network multiple times, see Fig 2.11D. Noticeably, these events 

last a bit longer than in the 2D network, but they systematically ended after a few hundreds of 

milliseconds. Therefore, these results indicate that the finite size of our networks seem not 

altering the initiation of NBs observed in our experiments and simulations with 2D networks.  

 
Fig 2.11: Spontaneous network bursts emerge in infinite-like networks. (A) An illustrative toroidal 

network constructed by introducing periodic boundary conditions to a 2D network. The neurons placed 

close to the matching borders (red-red, blue-blue) connect according to the same rule used for the 

standard 2D network. The links crossing the borders are in blue (top-bottom) and red (left-right). (B) 

Different clusters of network bursts depicted on a unit square area (dots = initiation sites, solid lines = 

average trajectory, shaded area = standard deviation). (C) An exemplary trajectory of cluster c.IV (see 

panel B) is depicted on the torus and (D) on the unit square for illustrative purposes.  

Functional connectivity reveals the localization of the NBs ignition sites 

The analysis of the functional links, i.e., relations among neurons that exhibit similar spiking 

activity across the entire experimental (n=15) and simulated (n=20) dataset, revealed considerable 

inhomogeneities in their spatial distribution. The functional graph obtained by retaining the most 

significant functional links according to the method described in Annex I – Detection of ignition 

sites, showed a confinement of its links within four to thirteen well-segregated regions of the 
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network. In those regions (black delimited areas in Fig 2.12A-B), the density of links per unit 

square exceeded more than three folds the average level of the network  (5.12±1.44 vs. 0.89±0.53 

functional links per neuron respectively, averaging over both simulations and experiments). 

Consequently, we investigated the possible relation between these regions of high density of 

functional links and the network areas initiating NBs obtained by the CAT analysis or Ignition Sites 

(ISs).  

Specifically, the application of a post-processing filter to highlight segregated components 

within the functional graph (see Annex I – Detection of ignition sites for further details) of our 

simulated network revealed a few (<10) clusters of neurons in distinct and spatially localized 

regions of the network, here referred as fCOMs. By construction, the neurons in the different 

fCOMs share similar firing patterns along the entire recordings (cross-correlation peak 0.52 ± 0.06 

for simulated networks and 0.19 ± 0.04 for recordings) with the exception of a time shift in the 

order of a few milliseconds (less than 1𝑚𝑠, i.e., neurons belonging to an fCOM fire almost 

synchronously). A possible explanation for such a tight coordinated spiking activities among pairs 

of neurons could be the presence of direct structural connections among them. However, in all 

simulated networks (n=20) the overlap between thefunctional links andthe underlying anatomical 

connections structural connectivity was below 4.9%, thus excluding the presence of direct 

structural connections.  

These properties of the functional graph were also verified in experimentally recorded 

neuronal networks. Interestingly, this allowed to reveal a similar organization of the functional 

graphs as obtained from simulated networks also in our high-resolution experimental recordings, 

see Fig 2.12B. Notably, as quantified in Fig 2.12C-D, the superimposition of the fCOMs regions with 

the NBs initiation sites, determined from the CAT analysis, revealed their co-localization (96±4% 

and 84±7% for simulation and experiments respectively). Yet, the fCOMs covered a marginal area 

of the entire network, i.e., 18±6% and 36±9% for experimental recordings and simulations 

respectively, see Fig 2.12E.  

Interestingly, a first outcome of this result is the possibility to take advantage from the analysis 

of functional connectivity to design a new algorithm for detecting NB ignition sites, both in 

experimental and synthetic data. The advantage compared to the CAT analysis is to enable 

determining with the required accuracy the set of neurons that are involved in NBs initiation. We 

thus evaluated the detection accuracy of the ignition sites based on the functional connectivity 

analysis by using a bootstrapping approach (see Annex I – Detection of ignition sites for the 

description). This showed a significant co-localization between fCOMs and CAT origins in both 

simulated data (18 out of 20 simulations) and experimental recordings (10 out of 15 experimental 

recordings). We also noticed that this analysis sometimes detected more fCOMs than clusters of 

trajectories and thus NB ignition sites. For instance, in the exemplary case reported in Fig 2.12B 

(bottom-right), the fCOMs did not give rise to any NB propagation. However, on the other hand, all 

the detected NB trajectories (and thus classes) could be associated to a specific fCOM. 

Consequently, the fCOM analysis proposed here provides an upper bound for the detection of the 

NB ignition sites. Importantly, this is obtained just by analyzing the overall spiking activity 

expressed by the network, or in other words, without any prior knowledge of the spatio-temporal 

patterns of NBs. 
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Fig 2.12: Network regions initiating spontaneous NBs correspond to functional communities (fCOMs). 

Spatial map of the functional communities (fCOMs) and CATs computed for NBs in (A) simulations (B) and 

recordings (for clarity, CATs are only depicted up to 50 ms after NB initiation). (C) The fraction of NBs 

with ignition sites (ISs) corresponding to a specific fCOM over the total number of NBs, for simulated 

(black) and experimental (blue) data. (D) Fraction of NBs whose IS colocalize with regions delimited by an 

increasing number of fCOMs (‘area covered’) with respect to the total amount of NBs. Solid lines mark 

the average values whereas shaded areas refer to standard deviations (black: n=20 simulations, blue: 

n=15 recordings). (E) Even though the number of fCOMs can exceed the ISs, the total area covered by the 

fCOMs on average is below 40% of the total area of the network in both experiments and simulations. 

 

Given the colocalization that I have found between fCOMs and NB ignition sites, I investigated 

which features might characterize the structural and, consequently, functional properties of the 

local neuronal sub-networks in the fCOMs. To assess the presence of a particular structural 

connectivity that similarly connects neurons in each fCOM, I designed an algorithm allowing to 

quantify the occurrence of a set of structural connectivity motifs77 (all non-isomorphic graphs up 

to six nodes) among fCOMs.  

Notably, we found that distinctive structural motifs characterized the fCOMs with respect to 

other regions of the network. In particular, the comparison between fCOMs and the null models 

(sCOM, rCOM, rndCOM, see Annex I - Quantification of structural connectivity motifs for 

definition) revealed that while simple path connections are more likely in regions not associated 

with NB ignitions sites (Fig 2.13A-C), the fCOMs overexpress structural motifs characterized by 
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high clustering and degree of recurrent connections (clustering coefficient of 0.56±0.30 respect to 

0.19±0.27, Fig 2.13D). The statistical analysis performed in all network simulations (n = 20), 

robustly supported this result, thus suggesting that the presence of highly recurrent local circuits 

represent an essential property of the network to initiate spontaneous NBs. 

 
 

 
 

Fig 2.13: Analysis of the structural connectivity motifs in the functional communities of the network. 

Clustering coefficient of structural motifs tested (up to six nodes and isomorphic subgraphs) against the 

relative abundance of structural motifs in fCOMs and the null-models tested:rndCOMs (A), rCOMs (B) and 

sCOMs (C), see Annex I - Quantification of structural connectivity motifs. Red dots mark the structural 

motifs occurring with a significant frequency difference (p-value<0.05, t-test) for all null-models. 

Regression lines visualize the trend among all the tested motifs (gray) and the statistically different ones 

(red). (D) Illustration of overabundant (positive index) and under-represented (negative indexes) 

structural motifs found in fCOMs with respect to the null models depicted in A-C. As highlighted by the 

red lines, a high clustering coefficient characterizes the structural motifs that are significantly over-

expressed in fCOMs; conversely, significantly under-represented structural motifs resulted in low 

clustering coefficients (0.56±0.30 vs. 0.19±0.27, respectively). 

Functional communities give rise to NBs 

The recurrence and the high clustering coefficient of the structural motifs underlying the 

fCOMs suggest a possible explanation of the mechanism underlying the triggering of spontaneous 

NBs. We hypothesized that the fCOMs could amplify asynchronous spontaneous spiking activities 

in the network that would eventually lead to the initiation of NBs. We tested this hypothesis in the 

model simulations by probing the network with mild sub-threshold stimulations delivered to 

fCOMs and non-fCOMs regions (areas not being part of any fCOM) and quantified the probability 
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of evoking NBs in these two different types of network regions: ISs and reference regions, see Fig 

2.14A. It is important to highlight that the goal is to identify the sensitivity of these different 

regions to coordinate fluctuations of the spiking activities of the local neurons. Thus, the 

stimulation used in our simulations could either not evoke an NB (Fig 2.14B.1) or efficiently evoke 

an NB after few tenths of milliseconds (Fig 2.14B.2). Whenever the stimulation does not evoke an 

NB, the effect on the overall network dynamic is assumed to be negligible as it activates at most a 

few of the target neurons (<25% in the worst case scenario, which represents less than 1% of the 

neurons in the entire network), see Fig 2.14B.3. 

The stimulation protocol, indeed, was designed to sense the responsiveness of the simulated 

network to spatially confined stimuli. Therefore, sub-threshold stimuli were delivered to target 

subregions of the network (e.g., 𝑅𝐼 Fig 2.14C) to provide a transient artificial activations of the 

AMPA conductance. All the probed regions consisted of ≃ 40 neurons with an intensity that 

decays quadratically from the centre of the site of stimulation Specifically, for 𝑑 ≤ 0.08, the 

magnitude of AMPA conductance was provided by the equation  
 

  𝑔𝑆𝑇𝐼𝑀 = (1 − (
𝑑2

0.08
)) 𝑔𝑆𝑇 𝑤𝑖𝑡ℎ 𝑔𝑆𝑇 = 45𝑛𝑆  

 

For distances 𝑑 > 0.08 from the stimulation point the conductance was arbitrary set to zero 

(𝑔𝑆𝑇𝐼𝑀 = 0 𝑛𝑆). The seven probed regions in our simulations correspond to four fCOMs  (I, II, III, 

and IV, Fig 2.14C) and three additional reference points (RI, RII, PII, Fig 2.14C) in the network. Note 

that reference regions (RI, RII, PII) did not give rise to any NB in the spontaneous spiking activity of 

the associated control simulation (c.f. Fig 2.14C with Fig 2.12A). Importantly, PII has been chosen 

to test the spatial sensitiveness of region II in amplifying sub-threshold fluctuations.  

Interestingly, all fCOMs displayed an almost two-fold higher probability of evoking an NB 

(39.07±3.74%) respect to reference regions (23.35±4.08%),  see Fig 2.14D. Additionally, a focused 

stimulation is required to efficiently ignite NBs since the probability of evoking events of PII, is 

significantly lower than the one of 𝐼𝐼(12.93±5.43% decrease of efficiency). 

Hence, our simulations show that fCOMs are also spatially selective to subthreshold 

stimulations and require the simultaneous depolarization of their neurons to give rise to an NB. All 

in all, fCOMs are indeed capable of initiating NB events by amplifying through their recurrent 

connections the fluctuations of the membrane potential of neurons due to the intrinsic 

spontaneous activity or of fading and sparse activity coming from the remaining part of the 

network.  
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Fig 2.14: Functional communities amplify sub-threshold stimulation of the membrane potential. A mild 

depolarization of the membrane potential of neurons composing fCOMs and reference regions highlight 

functional differences in the simulated network (n=10). (A) Raster plot of an illustrative protocol of 

stimulation. Red dots mark the timing of stimuli delivered to single neurons of four distinct fCOMs, while 

black dots represent the spontaneous spiking activity of the network. The stimulation delivered can be 

ineffective (B1) or efficient (B2) in evoking network events. While an effective stimulation activates all 

the neurons in fCOMs, an ineffective stimulation determines the activation of a few neurons, ensuring a 

negligible effect on the network dynamics (B3). (C) The location tested were four fCOMs (I, II, III and IV 

c.f. Fig 2.12A) and three reference regions as depicted in (RI, RII, PII c.f Fig 2.12A).The strength of 

stimulation delivered to the considered neurons is color-coded. (D) The probability of evoking NBs 

depend significantly on the probed region. The probability of evoking NBs by stimulating the fCOMs 

doubles respect to the stimulation delivered to the non-fCOM areas. Note that the probability of evoking 

NBs by stimulating the out of focus region II (c.f. RII) is comparable to that of stimulating random regions 

in the network. *p<0.05,**p<0.01,***p<0.001. 

The spiking activity preceding a network burst exhibits stereotyped spatial-

temporal patterns 

A plausible hypothesis on the initiation of NBs supported by our findings on fCOMs is to 

consider that the amplification induced by the recurrent connectivity underlying the fCOMs might 

influence the local spiking activity and generates stereotyped pre-NB patterns of activation that 

induce these network-wide events. This hypothesis is also partially supported by the presence of 
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burst leader, i.e., individual channels that statistically lead the initiation phase of a network burst 
78, observed in low-resolution recordings. The full-knowledge of network activity and the high-

resolution recordings provide the suitable framework to verify this hypothesis and to extend the 

notion of burst leader to neuronal assemblies eventually. Hence, I have analyzed the spiking 

activity for a time-window of 100 ms preceding the onset of an NB (pre-NB, see Annex I – 

Detection and clustering of pre-NB spiking activity for further details). With a novel approach, the 

spike trains of the pre-NB are interpreted as graphs (NB-graph), where each spike is seen as a 

node of a graph, and it is connected to a nearby node (i.e., spikes) when a criterion of the vicinity 

in time and space is satisfied.   

Once the pre-NB activity is converted to a graph, we can exploit the tools derived from the 

graph theory to identify similar sub-graphs between distinct NBs, here referred to as temporal 

motifs. Consequently, we defined as measure of similarity the presence or not of sub-graphs that 

appears in two different pre-NBs. This measure of similarity, based on the relationships among 

nodes in the graph architecture of the pre-NB activities, preserves the network properties, i.e., the 

temporal order of spike timing as well as their spatial sequence of activation, without involving the 

absolute timing of the spikes directly. Importantly, this similarity measure quantifies the vicinity of 

spikes patterns, and it is robust to the noise (Fig 2.15A, shared spikes M=12).  

By considering similar two spiking patterns that shared at least a subgraph of six nodes 

(temporal motif), we found an interesting behavior concerning the initiation phase of NBs. Indeed, 

this analysis revealed that NBs belonging to the same cluster of propagation (or NB class) shared 

at least a spatio-temporal pattern of more than six spikes during the very beginning of the 

initiation phase of the NB, see Fig 2.15B. In our simulations (n=10), this similarity among pre-NB 

spiking patterns for NBs of the same cluster (i.e., detected by CAT analysis) was significantly higher 

with respect to pre-NBs spiking patterns associated to any other NB (66.7±8.1% vs. 4.2±0.8% 

respectively), see Fig 2.15C. To test the consistency of this result, the maximum threshold for 

similarity, i.e., the number of spikes composing the common temporal motif, was varied for 

sequences of spikes of different length, from 6 to 60 spikes, see Fig 2.15D. This revealed a plateau 

reaching 67% of similarity between pre-NB belonging to the same class at approximately 50 spikes 

indicating that the pre-NBs spike trains can share very complex patterns.  

Given such similarity observed in the pre-NB spiking activity, we then clustered the NBs using 

the novel similarity measure instead of considering the CATs. As for the CAT analysis (Fig 2.6E), the 

reordered similarity matrix of the pre-NBs spiking activity displayed a clear block structure. This 

result further confirms that the initiation phase of NBs strongly characterizes these events, see Fig 

2.15E. Notably, the very same analysis applied to experimental recordings (n=5) also lead to a 

block structure (Fig 2.15F) that is also similar to the one obtained with the CATs analysis (Fig 2.1F), 

although the comparison of the results obtained with both analyses is not as strong as obtained 

from synthetic data. Altogether, these results support the hypothesis of a dedicated local circuitry 

(or functional community of neurons) that gives rise to network-wide propagation through a 

stereotyped amplification of the sparse and asynchronous spontaneous spiking activity of the 

neuronal culture.  
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Fig 2.15: Stereotyped spiking patterns associated with ignition sites characterize the initiation phase of 

NBs. (A) Detection of similar temporal motifs within the pre-NBs activities: starting from two NBs (𝜶, 

𝜷),th e pre-NB activity (𝜶𝑷𝑹𝑬, 𝜷𝑷𝑹𝑬) is considered to construct the NB-graphs (𝜶𝑮, 𝜷𝑮). Next, isomorphic 

sub-graphs were detected in the two largest connected components (𝜶𝑳, 𝜷𝑳) and the number of spikes 

within the shared sub-.graph (temporal motifs (𝜶𝑴, 𝜷𝑴) defined the strength of similarity (M=12 spikes). 

(B) All NBs of the same cluster (e.g., cluster ID 0) share common pre-NB temporal motifs (cyan spikes). 

For instance, the NB occurring at the time 𝒕𝟎 shares a temporal motif with the event at the time 𝒕𝟏 but 

differs from the temporal motif shared between NBs occurring at the time 𝒕𝟐 and 𝒕𝟑. (C) Normalized 

similarity matrix of clustered NBs with M > 5. The clustered NBs share the highest number of motifs (i.e., 

higher values on the diagonal), indicating that the pre-NB activity is informative of the following NB. (D) 

Cumulative similarity plot corresponding to the data in panel C but normalized with respect to the cluster 

size (per-cluster, dashed line) or to the total number of NBs (solid lines). The similarity is consistently 

higher for the pre-NB activity of NBs belonging to the same cluster (IN) than for the NBs of other clusters 

(ACROSS). (E) Reordered similarity matrix of pre-NB activity of a simulated network, showing a block 

structure. Each block is relative to an NB cluster characterized by similar pre-NB spiking patterns. (F) 

Reordered similarity matrix of recorded pre-NB activity in a cultured network, still allowing for a block 

structure.  
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Emergence of local inhomogeneities in the network connectivity 

Our results suggest that the initiation of NBs in a neuronal network is associated to the fCOMs 

and to their particular local neuronal connectivity properties that differ from the rest of the 

network. Here, I performed additional simulations to understand better how these local 

inhomogeneities in the network connectivity might arise in the computational network model.  

To do so, I applied the Gaussian connectivity algorithm to six distinct spatial arrangements of 

neurons, ranging from a regular grid (Fig 2.16A) to a fully random distribution (Fig 2.16F). In 

regular grids (Fig 2.16A-B) the node degree remains constant at the center of the network, and it 

decreases when approaching the border of the network because of a finite size effect (i.e., lack of 

nearby neurons to connect with). Interestingly, in the random arrangements, clusters of densely 

interconnected nodes emerged (Fig 2.16E-F) without requiring any external mechanism of 

guidance, but instead arise from a distributed mechanism of connections.  

We further investigated the impact of the neuron disposal with respect to the node degree 

and the clustering coefficient of graphs preserving the Gaussian rule of connectivity. Interestingly, 

the node degree and the clustering coefficient increase when increasing randomness of the 

neuronal disposal (Fig 2.17A-B, n=10 graphs for each node arrangement). Furthermore, we also 

found that the spatial distribution of node degrees is not uniform over the entire network. Indeed, 

the variability of the average node degree computed over 3x3 subdivisions of the original network 

(Fig 2.17C) increases with the random disposal of the neurons (Fig 2.17D).  

All in all, our computational exploration revealed that the denser interconnected communities, 

emerge naturally from a combination of factors, including the random arrangement of neurons, 

the distance-dependent connectivity rule and the sparsity of the neuronal connections. The 

factors above determine how the network autonomously expresses network bursts, suggesting a 

potential robust mechanism that biology might exploit to ensure persistent spiking activities 

considering the intrinsic spatial variability, heterogeneity and the initial wiring of a developing 

neuronal network that will further evolve (e.g., sculpted by activity). 
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Fig 2.16: Emergence of densely connected micro-circuits. Microcircuits with a denser connectivity pattern 

(the size of each node is proportional to its degree) emerge moving from a regular grid network (A, u=0) 

to a fully randomized network (F, u=1). All networks consisted of N=100 neurons. 

 
 

 
 

Fig 2.17: Graph theory parameters for different randomization levels of neuron arrangements. The 

average degree (A) and the average clustering coefficient (B) increase with the increasing random 

disposition. (C) An illustrative example of a small network (N=100 neurons) shows that the different 3x3 

sub-regions can have quite variable node degrees. (D) The variability of the node degree is a function of 

at the randomness of the neuronal arrangement. For each node position randomization, we generated 

n=5 networks each with 4096 neurons.    
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Applications and extension of the computational network model  
 

Given the versatility and the goodness of our biophysical computational network model in 

predicting and replicating a vast number of spontaneous spiking regimes, I also explored its 

extension to explain biological principles underlying changes in the spiking activity observed in 

different experimental conditions compared to those studied so far on a 2D network of wild-type 

neurons. In particular, I have applied the model to two experimental conditions i) to interpret 

experimental data obtained from a transgenic neuronal culture in which the PRRT2 gene was 

deleted, and ii) to interpret the spontaneous activity recorded from 3D neuronal cultures by 

extending the model from 2D to 3D.  

 

Modelling and interpreting the effects of PRRT2-gene deletion in neuronal cultures  

In humans, mutation of the PRRT2 protein determines paroxysmal disorders such as epilepsy, 

kinesigenic dyskinesia, migraine or episodic ataxia79. As reported by our collaborators, the deletion 

of PRRT2 determined several changes at a synaptic and cellular level also in neuronal cultures. 

Specifically, at the cellular level, a misbalance between GABAergic and glutamatergic transmission 

characterized KO cultures respect to control ones in favor of a global increase in excitation. 

Indeed, the population of excitatory neurons increased by 10% while the inhibitory population 

decreased more than 30%, respect to conventional cultures. The reported misbalance might itself 

explain the hyperactive spiking activity of KO networks, which exhibit a 30% increase in firing rate 

together with a 10% increase of the parameters associated with network burst activity. However, 

the explanation is not straightforward given the information acquired at the synaptic level. Patch-

clamp experiments revealed a 25% reduction in the peak magnitude of evoked Excitatory Post 

Synaptic Currents (eEPSCs) with a consequent increase in the paired-pulse response (PPR) and a 

lower release probability (Pr). Conversely, evoked Inhibitory Post Synaptic Currents (eIPSCs) 

display a symmetric behavior: the peak current increased by 25%, the paired-pulse response 

diminished, and the release probability increased. Additionally, compared to control hippocampal 

cultures, mutant cultures exhibit a 20% decrease in the number of excitatory synapses while 

inhibitory contacts were unchanged.  

This latter evidence indicates that although the mutant network exhibits a higher excitation 

due to the presence of more excitatory neurons, their synaptic efficacy is severely impaired 

compared to control cultures and this reduction in efficacy and number of excitatory connections 

is further amplified by an increased contribution of GABAergic synapses. Moreover, upon 

treatment with bicuculline, the spontaneous spiking activity of both WT and KO cultures displayed 

similar changes in the spiking activity. Consequently, changes in the GABAergic transmission alters 

similarly the PRRT2 KO and control cultures, suggesting that the impaired maturation of the 

GABAergic transmission (e.g., a late GABA switch) does not occur in KO cultures in these 

recordings. Additionally, this experiment further indicates that the hyperactivity of KO cultures 

cannot be attributed to a lack of functional GABAergic neurons.  
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Changes in short-term plasticity are necessary, but not sufficient, to explain the hyperexcitability of 

PRRT2-KO networks 

Given the counterintuitive experimental picture characterized by a decreased strength of 

excitation in favor of inhibition at the synaptic level, a set of simulations were designed to assess 

whether the altered excitatory to inhibitory neuron ratio, could explain the increased spontaneous 

spiking activity of KO cultures in simulated networks. To target the question related to cellular and 

synaptic properties, rather than a different network connectivity contribute, control and KO 

simulated network shared the same structural graphs. Importantly, an additional fitting of 

neuronal and network parameters to the synaptic and cellular evidence ensured a fair comparison 

between computational and experimental exploration. Here, the advantage of computational 

investigation concerned the capability of pairing each simulated control culture to a corresponding 

KO with a few modifications induced by the working hypothesis. Specifically, to preserve the 

cellular and synaptic features of control network as close as possible, KO network construction 

starts from a control simulation as follows: 
 

 Converting a random set of inhibitory neurons into excitatory ones in order to match the 

Excitatory to Inhibitory (E/I) ratio of KO cultures, see Fig 2.18A. 

 Setting the excitatory synaptic facilitation to the experimentally reported values, see Fig 

2.18B 

 Randomly removing the 20% of excitatory synapses   
 

Concerning KO cultures modeling, additional sets of simulations assessed the hypothesis of an 

enhanced excitability of excitatory neurons, through a decreased spike-triggered adaptation, in 

contributing to KO hyperactivity (+IE condition) respect to KO condition (-IE). Specifically, the 

update of the self-inhibition provided by the spike-triggered adaptation at each action potential 

elicited by the neuron was set to half of the control value (b = 20 vs. b = 40 for +IE vs. –IE 

condition). The outcome of this change determined a slower adaptation in firing rate induced by 

the injection of a current step, see Fig 2.18C. 

Remarkably, despite the significantly lower number of synaptic contacts and their reduced 

strength, the PRRT2 KO simulated spiking activity is still characterized by the appearance of NBs. 

However, the experimental findings simulated, could not fully explain the hyperactivity of KO 

networks. Specifically, although changes in the excitatory facilitation are required for simulated 

networks to exhibit network-wide activation, they were not sufficient to reproduce the 

experimental trends in the average network parameters. 

Consequently, by taking a closer look at the dynamics of NBs in KO-culture, a possible 

mechanism that could recapitulate the difference observed experimentally was an enhanced 

spike-triggered adaptation. Indeed, NBs of KO cultures were characterized by longer durations and 

a higher number of spikes compared to control cultures. Thus, a new set of simulations for which 

excitatory neurons displayed less adaptation in response to a current step (Fig 2.18C-D), well-

captured the experimental evidence (KO+IE). In particular, the simulated spiking activity exhibited 

an increased firing and bursting rates that was missing without a different intrinsic excitability, see 

Fig 2.18E-H.  
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Fig 2.18: Modeling of the PRRT2-KO synaptic phenotype at the network level. (A) Representative 

close-up of a simulated network. In order to maintain the proper inhibitory to excitatory ratio, randomly 

chosen inhibitory neurons (40% of the WT inhibitory population, blue) were turned into excitatory (red) 

neurons in the PRRT2-KO simulations. (B) Paired-pulse ratio of excitatory synapses as a function of ISIs. 

(C) Representative membrane potential traces of excitatory neurons for two conditions of Intrinsic 

Excitability (IE): -IE used in WT and KO (-IE) samples and the more excitable neurons +IE implemented in 

KO networks (+IE). (D) Quantitative analysis of action potentials generated by (–IE) and (+IE) neurons in 

response to 1-s step injection of 200 pA current. (E-H) Network statistics are reported for WT (gray), KO-

IE (orange) and KO+IE (red) networks (N=10/experimental group). The increased facilitation of KO 

networks cannot fully explain the evidence observed in the experiments (KO-IE, orange). However, by 

integrating an enhanced Intrinsic Excitability (KO+IE, red), the simulations reproduced the experimental 

data qualitatively. Paired t-test *p<0.05,**p<0.01,***p<0.001.  
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This observation, deriving from the computational exploration of the parameter space, 

indicate that the KO networks require an increase intrinsic excitability to balance the lower 

network connectivity and excitatory transmission. Indeed, with this setting, the simulations fully 

reproduce all the phenotypes characterizing the increased PRRT2-KO spiking activity, although 

other unexplored mechanisms can work synergically with the one suggested by the computational 

exploration. Consequently, our collaborators assessed the computational hypothesis through ad-

hoc patch-clamp experiments. These new experiments indeed showed that the excitability of the 

excitatory neurons is also altered in the KO.   

Altogether the insights gained through the computational exploration suggested a set of new 

experiments that further validated the combination of experimental and computational 

approaches to advance with the characterization of the PRRT2 KO data.  

 

From 2D networks to 3D neuronal culture computational network models 

Brain circuits fully exploit a 3D environment to develop and grow, leading to complex 

functional circuit structurally organized in a tridimensional space. However, although neurites and 

neurons in culture can overlap one on top of the others, the overall network can be assumed as bi-

dimensional rather than a 3D organization. A natural question arises on how the different and 

more natural 3D spatial arrangement80 can affect the spontaneous activity of a neuronal network. 

To address this question, a fruitful collaboration with Laura Ballerini (SISSA) allowed us to compare 

2D to 3D cell cultures network activities recorded by calcium imaging. Our collaborators developed 

biocompatible scaffolds of porous materials to grow neurons in a 3D environment81. Hippocampal 

cultures were grown in the conventional 2D environment and 3D configuration for 21 DIVs and 

monitored through calcium imaging approach, and a few hundreds of micrometers in the 3D 

cultures were scanned. Notably, our colleagues in Trieste observed different patterns of activity in 

3D geometries compared to the classical 2D ones. Specifically, in 3D cultures, the InterEvent 

Interval (the time between synchronous calcium events, IEI) was significantly lower than the one 

recorded in the 2D networks, thus suggesting a crucial role of the network wiring in regulating the 

occurrence of such population events (Fig 2.19B, black bars). To this end, we extended the 2D 

model that we developed to support experimental findings and to investigate how the 

connectivity can alter the spontaneous neuronal spiking activity. In order to effectively compare 

the simulation results to the experiments, we made the reasonable assumption that synchronous 

calcium events correspond to the network bursts generated by the computational model.    

The working hypothesis was that the 3D wiring could itself explain the higher frequency of NBs 

observed in 3D cultures respect to 2D ones. In order to build the 3D network, we assumed that the 

neurons connected with the same radial-basis rule used in the 2D network (see Annex I – Network 

topology). To obtain the same number of synaptic contacts per neuron in both 2D/3D topologies 

the number of connections in the 2D network was decreased by randomly removing synaptic 

contacts. The latter assumption is crucial to assess whether the 3D wiring is the main determinant 

of the observed differences. Importantly, a similar percentage of active cells in 2D and 3D 

networks supports the hypothesis that a comparable number of synaptic contacts exist in the two 
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networks. Hence, by keeping most of the number of parameters of the 3D network as in the 2D 

one, we can test whether a genuine change in the connectivity of the 3D networks (respect to the 

2D ones) can itself explain the increased synchronous calcium events.  

Consequently, to perform the simulations, first, a 3D network was built by using a 3D 

symmetric radial basis function with variance set to 2=0.0035. Second a 2D network associated 

with the 3D one was constructed with the same link-length distribution (i.e., by setting the same 

variance 2=0.0035 in a 2D standard network). Then, for each neuron in the 2D network, a random 

subset of connections was removed to get the same number of synaptic contacts of the 3D 

network. The latter step is needed to balance the increased density of neurons in 2D respect to 3D 

configuration while keeping the degree distribution between the two conditions as close as 

possible. Notably, multiple runs (n = 10) of each tested 2D/3D topology determined differences in 

the spiking activity of 2D/3D simulated networks comparable to the one observed experimentally. 

Indeed, the IEI of simulated networks significantly diminished in 3D networks quantitatively 

pairing the experimental observation both in control condition and even upon mimicking the 

effects of bicuculline. (i.e., by setting GABA conductance to zero; Fig 2.19B).  

 

 
 

Fig 2.19: Comparison between 2D and 3D-topologies respect to graph theory parameters. (A) 3D 

networks significantly differ for their clustering coefficient. (B) The Inter-event intervals for control, and 

bicuculline conditions observed in the 2D and 3D environments. The model (white bars) mimics correctly 

the experimentally observed dynamics (black bars) and support the idea of a different wiring as a key 

player in the observed differences. 

 

Given the accordance between the simulations and the experiments, the focus of the investigation 

pointed towards the differences in network connectivity between 2D and 3D simulated cultures 

since it represented the only difference between the two simulated configurations. Classical graph 

theory quantification performed onto the two candidate networks revealed that while in the 

2D/3D networks the mean path length was unchanged, the clustering coefficient of 2D networks 

was significantly lower respect to 3D ones, see Fig 2.19A. Additionally, the link length distribution 

(i.e., the length of the connections, inset Fig 2.19A) of the 3D networks displayed a shift to the 

longer distances with a longer right-tail compared to the 2D networks. Consequently, the previous 

assumptions induce an increased clustering coefficient and the more extended links in 3D 

networks respect to 2D ones. Importantly, this evidence can suggest a possible mechanism that 

underlies the higher efficiency (i.e., excitability) of 3D neuronal cultures. In fact, the clustering 
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coefficient indicates that the simulated 3D network exhibit more recurrent and clustered 

connections than the 2D one, which as outlined in the previous sections, represent a suitable 

condition for NBs initiation sites. Conversely, the shift to longer links suggests that the spiking 

activity can spread much faster throughout the network but also that ignition sites can receive and 

amplify the sparse activity of a broader region of the network, thus explaining the higher amount 

of NBs per unit of time of 3D neuronal networks. 

Altogether, the computational exploration supported the experimental evidence and provided 

insights into the mechanisms underlying the higher excitability of 3D neuronal networks, and it 

could be useful for further experimental and modeling investigations82. 
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Chapter III - Basic concepts on retina 

physiology and function  
 

 

 

The aim of this chapter is to introduce some basic concepts on the physiological properties of 

the retinal circuit. In the first section the structure1, the cellular composition2 and the functional 

wiring of retinal cells3,4 are introduced to provide an anatomical overview of this sensory circuit. 

The second section focuses on the input-output capabilities of the retina by introducing the 

concepts of vertical and horizontal information processing5,6 in this circuit. In the third section, I 

will shortly review the technological approaches7,8 used to study the output spiking activity of the 

retina upon visual stimulation. Finally, in the last section, I will review the relevant literature on 

the study of horizontal interaction in modulating the response of retinal ganglion cells that I have 

explored in the second part of my Ph.D.  

Anatomical structure of the retina 
 

Visual perception starts from the eyes, where the retina transduces variation of light 

intensities into electrical signals, i.e., spike trains, which the brain processes to form a meaningful 

representation of the world1. The signal transduction that culminates in the spiking patterns 

conveyed by retinal ganglion cells (RGCs) to the brain represents the outcome of an early, yet 

complex, processing of information occurring at the network level35 of the retinal circuit. To 

investigate how this process occurs several animal models have been used, such as primates, 

rabbits, cats, salamanders, turtles and mice. Each one of these animal models recapitulates some 

of the features of the human retinas. A first notable difference is the presence or not of the fovea, 

a small specialized structure located in the center of the retina that allows resolving fine details in 

the central part of the visual scene in day-light conditions9. Among mammals, the fovea is found 

only in primates retinas, while several species of birds have a double fovea to locate their preys 

with high accuracy. Indeed, as a result of a gain of function during evolution, the fovea is a region 

of the retina dedicated to high acuity tasks such as reading or detecting small remote targets. 

Conversely, the peripheral vision, i.e., the remaining part of the retina, is involved in the detection 

of large objects at distance or small objects but at a very close distance. Hence, the vision in 

animal models lacking fovea resembles the peripheral vision of primates. Specifically, in this study, 

we investigated the visual processing occurring in the mouse retina. Similarly to nonprimate 

mammal animals, the mouse retina does not have a fovea, however, its anatomical organization 

pairs the peripheral retina organization of primates10. Consequently, the results of our 

investigation can be faithfully interpreted in the context of peripheral vision of primates. 

Moreover, the mouse retina is tailored for vision in dim and low light condition10 as a result of the 
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evolution in a dim environment. Hence, the stimulation protocol has to take into account this 

feature to probe the mouse retinal circuit with stimuli that, although artificial, have similar 

characteristics to the natural visual environment of a mouse. Importantly, also the internal 

organization of the mouse retina matches the primate retina as all of the principal primate retina 

interneurons are present also in mouse retinas11. In search of general principles underlying the 

encoding of visual scenes, in the next section, I report the anatomical characterization and general 

features of the retinal circuit shared among non-foveal mammals. 
 

Layered structure of the retina 

The retina, despite its decentralized location, is part of the Central Nervous System (CNS)1 and 

exhibits a well-organized network structure consisting of several layers of cells512, namely the 

photoreceptor, outer nuclear, outer plexiform, inner nuclear, inner-plexiform layers, that stratify 

one on top of another across the vertical spatial extension of the retina13. Each layer is readily 

detectable since it is composed of distinct constitutive cells<sup>14</sup> and wiring features14. 

Specifically, the plexiform layers are mostly innervated with neuronal processes whereas the 

remaining three layers contain cell bodies12. As shown in Fig 3.1, the constituent cellular elements 

of these layers10 are: 
 

 Rods and cones 

Rods and cones populate the photoreceptor layer of the retina, with rods outnumbering 

the cones approximately more than twenty folds15. Rod and cones convert light stimuli into 

an electrical activity that is signaled downstream as a reduction of neurotransmitter 

release13. On the contrary, in the absence of light (e.g., in dark conditions) they 

spontaneously release neurotransmitters16. Specifically, the activation of photopigments as 

a consequence of light stimulation hyperpolarize these cells and prevent the release of 

neurotransmitters16. Rods and cones not only differ in their morphologies but also in 

functions: while rods primarily assist the vision in low luminance condition (scotopic 

regime), cones primarily assist with day-light vision (photopic regime)17. Rods are reported 

to be approximately 100 fold more sensitive than cones to single photons18,19. On the other 

hand, the temporal response of cones if significantly faster than the one of the rods13.  

 Horizontal cells 

These cells, whose soma is located in the inner nuclear layer20, mainly integrate the output 

of multiple photoreceptors horizontally and provide negative feedbacks to the 

photoreceptors and bipolar cells in the outer plexiform layer4 (see below). Consequently, 

they are considered part of the outer retina from their functional role. Horizontal cells 

depolarize as a result of photoreceptors glutamate release, which occurs in the absence of 

light, and, in turn, induce hyperpolarization in the neighboring photoreceptors. Conversely, 

in light condition, the reduced neurotransmitter release of photoreceptors hyperpolarizes 

horizontal cells, resulting in photoreceptor depolarization12. Importantly, this continuous 

feedback determines a dynamical regulation of the photoreceptor activity that can support 

signal adjustments in the bright and dim environments21. Horizontal cells represent a minor 

fraction of the retinal interneurons (less than 5% in the inner retina)10. 
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 Bipolar cells 

Bipolar cells transmit the signal of photoreceptors and horizontal cells to ganglion cells 

either directly or indirectly via the amacrine cells, and they provide the sole way to 

transmit the signal received from photoreceptors to downstream layers13. This population 

consists of two major types of bipolar cells: ON and OFF3 that can have a transient or a 

sustained response20. During darkness, the release of neurotransmitters by photoreceptors 

determines an inhibitory effect on ON bipolar cells while it excites OFF bipolar cells. 

Differently, in light condition, the lack of neurotransmitter release suppresses the 

inhibition on ON bipolar cells and determines the firing of ON bipolar cells. At the same 

time, OFF bipolar cells become silent as a consequence of the removal of their excitatory 

drive22. Importantly, the ON/OFF pathway starts at the level of bipolar cells (cones form 

synaptic contacts with bipolar cells regardless of their type ON or OFF) and propagates 

downstream to the entire retina23. ON and OFF bipolar cells form synaptic contacts with 

retinal ganglion cells in specific locations of the inner plexiform layer: ON bipolar cells form 

synapses in the inner part of the inner plexiform layer whereas OFF bipolar cells in the 

outer one3. Furthermore, while the communication with photoreceptor is mediated by 

ionotropic receptors in OFF bipolar cells, ON bipolar cells integrate the signal through 

metabotropic receptors12. Importantly, although there are more than ten distinct bipolar 

cells connecting cones, it exists only a single type of bipolar cell receiving signals from the 

rod pathway24. Bipolar cells activity reflect a center-surround organization resulting from 

the direct innervation of the photoreceptors located on top of them3. The sustained or 

transient response of bipolar cells is ultimately determined by the desensitization recovery 

timescale of their receptors25.  

 Amacrine cells 

The population of amacrine cells includes a considerable number of different subtypes as a 

consequence of their dendritic morphology and stratification26. In general, these cells 

modulate the interaction of bipolar and ganglion cells through an inhibitory network 

extending horizontally27. Importantly, the functional role of this class of cells remains 

relatively poorly understood compared to the other mentioned populations of cells26. The 

extent of their dendritic arborizations defines the three primary populations of amacrine 

cells28, namely, narrow-field (about 70 µm diameter), medium field (about 170 µm) and 

wide-field amacrine cells (350 µm). The different morphological structure indicates 

different potential functional roles27. The conformation of narrow-field amacrine cells 

mostly modulates the signal transmission locally and across distinct retinal layers29. These 

cells also form functional subunits within the receptive field of ganglion cells, thus 

suggesting a potential contribution in increasing visual acuity30. Conversely, wide-field 

amacrine cells span the entire retina, indicating a potential role of interaction within layers, 

rather than between layers26. Finally, medium-field amacrine cells have been shown to 

support the vertical communication pathway, even though their functional role is still 

largely unknown27. GABA and glycine neurotransmitters mediate the inhibitory effect of 

amacrine cells20. Additionally, a subclass of GABAergic amacrine cells modulates light 

adaptation and circadian rhythms through a diffuse release of dopamine26. Moreover, most 
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of the synaptic inputs integrated by ganglion cells are not direct connections from bipolar 

cells, rather indirect pathways having amacrine cells as signal regulators, i.e., bipolar – 

amacrine - ganglion cells3. Additionally, amacrine cells outnumber retinal ganglion cells 

more than ten folds22. 

 Retinal Ganglion Cells 

These cells end the signal processing of light in the retina and, consequently, represent the 

output neurons of the visual information from this circuit12. Importantly, they convert 

signals of bipolar and amacrine cells (which are for the most part graded potentials22) into 

a spike train representation. Like bipolar cells, also retinal ganglion cells are divided into 

several categories and subtypes12. The most extensive classification performed reported 

more than 30 distinct groups of these cells and was performed based on functional 

responses, morphological structures, and genetic signatures31. The top level of this 

hierarchical classification, however, reveals three major types of ganglion cells: ON, OFF 

and ON-OFF, as most of the other different subtypes descend from these three major 

classes. Each retinal ganglion cell is supposed to convey a distinct feature of the visual 

input as an output of the upstream circuit processing5. Retinal ganglion cells are arranged 

within the layer in a mosaic structure, with a different overlap of their receptive fields23. 
 

 
 

Fig 3.1: Layered organization of the retinal circuit. The retina has a well-defined laminar 
structure organized into layers: plexiform layers (inner and outer are dedicated to synaptic 
contacts while nuclear layers (inner and outer and ganglion cell layer contains cell bodies. 
Ganglion cells populate the ganglion cell layer, amacrine, bipolar and horizontal cell somas 
populate the inner nuclear layer while rods and cones are located into the outer nuclear layer. 
Image adapted from https://commons.wikimedia.org/wiki/File:Retina-diagram.svg, CC-BY-SA-
3.0. 
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Phototransduction: from photoreceptors to ganglion cells 

As a consequence of absorption of photons that have traveled across the entire thickness of 

the retina (Fig 3.1), the photopigments in the outer part of the photoreceptors triggers a complex 

cascade of molecular reactions (phototransduction) that result in the light-modulation of the 

membrane potential of photoreceptors17. This electrical signal is then transferred to horizontal 

cells, providing feedback inhibition onto the photoreceptors and bipolar cells10. Bipolar cells 

receive two distinct antagonist inputs: while the photoreceptors excite (or inhibit) directly the 

bipolar cells, horizontal cells provide an averaged photoreceptor input that inhibits (or excite, 

respectively) the target bipolar cell32. Next, bipolar cells signal to ganglion and amacrine cells. In an 

oversimplified picture, the amacrine cell functionally regulates the signal transduction between 

bipolar and ganglion cells similarly to the one of the horizontal cells onto photoreceptors and 

bipolar cells 1. Finally, ganglion cells terminate the signal transduction cascade by producing action 

potentials that are conveyed to the brain along with their axons7. 
 

Synaptic communication among retinal cells 

Differently from other brain circuits, whose neurons predominantly generate digital-like 

spiking signals to convey information to post-synaptic neurons, only a few retinal cell types can 

fire action potentials. These cells are retinal ganglion cells and some subtypes of amacrine 

cells23,30. Most of the retinal neurons lack of well-defined and extended axonal processes except 

for retinal ganglion cells whose elongated axons, forming the optic nerve, ultimately convey the 

output of the retina to the dedicated brain areas12,20. Consequently, while the spike trains 

represent the neuronal code of the brain, locally graded and continuous signals mediate the 

coding and the interactions among retinal cells33. Retinal cells contact each other with either gap 

junctions or chemical synapses that reflect the layered structure23. Neighbouring retinal cells 

belonging to the same layer preferentially form gap junctions that allow bi-directional electrical 

couplings through direct contact with the cytosol of the cells4. Although this local interaction can 

exhibit different coupling strength in distinct layers, their ultimate function is to locally distribute 

the information in the layer as a result of the electrical correlation among contacted cells3. 

Depending on the layer, the outcome of this horizontal spatial integration of the visual 

information results in different processing mechanism as highlighted in the next section.  

Conversely, cells of different layers mainly communicate through chemical synapses12. The 

canonical excitatory pathway transfers the signal from the photoreceptor to bipolar cells to 

ganglion cells in a feedforward manner32. Conversely, the inhibitory retinal neurons, i.e., 

horizontally and amacrine cells, indirectly transmit signals in a feedback fashion: horizontal cells 

onto photoreceptors21 and amacrine on bipolar cells30. 
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Input/output properties of the retina 
 

The retina is a self-standing brain circuit in the sense that the early processing of visual 

information occurs in the circuit itself, with minimal external modulations from other brain 

areas34.  

The retina represents one of the most widely studied systems since the origins of neuroscience 

and this is because of several reasons. The first, and most obvious one concerns the functional 

importance of this circuit as a sensory transducer of external stimuli into meaningful spike trains 

for the brain5,35. Second, the ganglion cell spiking activity, i.e., the information received by the 

brain, can be easily recorded either intracellularly or extracellularly7 thanks to their significantly 

higher size respect to the other retinal cells and their favorable position in the retinal circuit (a 

boundary layer)10. Third, the retina can be promptly stimulated with natural sensory inputs 

allowing direct correlation between its spiking activity and the visual stimulation1. This paradigm 

of investigation provided valuable knowledge concerning the correlation between the visual 

stimulus and the spiking activity of individual ganglion cells that are reported in this section. 

It is nowadays clear that the task of the retina goes beyond a mere pre-filtering of the visual 

information from the world5 as it is equipped with several circuits devoted to distinct tasks, 

including, but not limited to, motion detection36, contrast adaptation37 and extrapolation and 

anticipation of the trajectory of a moving object38. Even in the absence of light, retinal cells are 

never silent as a consequence of the continuous release of neurotransmitters by photoreceptors. 

Hence, in steady light condition, a significant fraction of retinal ganglion cells is spontaneously 

active as a consequence of the intrinsic properties and the dynamical balance occurring upstream, 

even if no stimulus is presented. However, upon visual stimulation, patterns of spikes elicited by 

each ganglion cell can change significantly, even if remaining influenced by the state of the 

upstream network. 

In general, retinal ganglion cells are most sensitive to light intensity variation occurring in a 

specific portion of the entire visual field, termed receptive field. On the other hand, extra-classical 

receptive field characterizes cells that upon stimulation onto their own receptive field are also 

sensitive to the distant features of the stimulus. 

Spatial feature extraction 

The response to light increments (or decrement) represents one of the most straightforward, 

yet intriguing, paradigms to understand the encoding process of visual information performed by 

the retina. Indeed, based on this paradigm it is straightforward to provide a first classification of 

the functional properties of retinal cells. Indeed, some cells respond preferentially to light 

increments (ON cells), while others to light decrements (OFF cells), thus defining two canonical 

pathways of processing. Additionally, ON and OFF retinal cells experience a considerable reduction 

or even suppression of the spiking activity upon application of the anti-preferred stimulus. Retinal 

cells that mostly exhibit these features are bipolar and ganglion cells. Importantly ON and OFF 

responses at the level of retinal ganglion cells are not symmetric: the ON pathway is more 

sensitive to increments and decrements of light (signaled as increments or decrements of spiking 

activity) than the OFF pathways 39. 
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Centre-surround organization 

The internal organization of the receptive field further evidences the interplay between the ON 

and OFF pathways. Indeed, a small spot of light shined within the receptive field of a cell induces 

distinct types of activity depending on the position of the spot in the receptive field. Indeed, the 

receptive field exhibits a center-surround structure40: if the spot of light (dark) is placed in the 

center, it excites the target ON cell (OFF cell), whereas the stimulation in the periphery of the 

receptive field induces inhibition. Nevertheless, full-field stimulation induces a non-negligible 

response even though the surrounding part of the receptive field tends to inhibit the cell. All in all, 

the spatial organization of the receptive field indicates a preferred size, shape, and position of the 

stimulus to maximize the response of the cell41. However, the spatial tuning properties of these 

cells go beyond the simple sub-division of ON (OFF) center, and OFF (ON) surround: receptive 

fields can have a nonconcentric structure or cells can both respond to increments or decrements 

of light but still exhibiting a spatially defined receptive field. An essential consequence of the 

center-surround organization of the receptive fields is the capability of cells to detect edges 

separating strongly different contrasts. Indeed, the cells whose receptive field partially overlap 

with an edge of the image are significantly influenced by the image compared to the ones whose 

receptive field is entirely covered by a plain stimulus. In the best case scenario, i.e., an edge that 

separates the center and the surround, the preferred (anti-preferred) and anti-preferred 

(preferred) stimulus stimulate the center and the surround of the cell, thus enhancing the 

excitation (inhibition) respect to a full-field stimulus (depending on its polarity). Functionally, this 

spatial organization determines a higher accuracy to details since the cell is always comparing the 

center of the stimulus to the average information acquired by the surround.  
 

Data compression 

Although the retinal circuit is constantly active even without the presence of visual stimulation, 

such as in dark conditions, ganglion cells very often do not respond to their preferred stimulus for 

its entire duration, but instead, they robustly respond at its onset. This behavior correlates with 

the intrinsic nature of the retina as a sensory transductor of the changing visual inputs. Indeed, as 

long as the stimulus is kept constant, the conveyed information is redundant and the circuit has 

already encoded the stimulus at its onset. In other words, it is generally considered that retinal 

ganglion cell transmit information about changing visual inputs, thus performing a temporal 

processing42. Although the fine time-scales of retinal ganglion cells responses are not uniform 

across the population, two major classes of temporal processing ganglion cells can be 

distinguished. These are transient and sustained ganglion cells. Transient ganglion cells fire in 

response to the preferred stimulus for less than 200ms, whereas sustained cells maintain a high 

firing rate for seconds after stimulus onset. This mimicking of this temporal processing occurring in 

the retina has been proven to be useful also for engineered video cameras. Specifically, by 

conveying information about changes rather than the stimulus itself, the speed of acquisition 

could be significantly increased as a result of the reduced amount of information to be 

transmitted43. Retinal ganglion cells produce highly reproducible spike trains in response to visual 

stimulation with low inter-trial variability44. This reliability and precision are functional for 
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temporal coding as latency related statistics are shown to convey significantly more visual 

information than spike counts in simple stimuli (flickering full-field contrasts44 or square-wave 

gratings45). These considerations are even more relevant if one considers that all the transmission 

of visual information is intrinsically limited by the transmission capacity (or bandwidth) of the 

optic nerve13. However, in contrast to the idea of an optimal code, the receptive field of retinal 

ganglion cells often overlaps significantly across neighboring cells, thus resulting in redundant and 

correlated spike trains46. This spatially redundant information, largely resulting from electrical 

couplings in the inner retina47, however, is interestingly less redundant than the original image. 

This is because nonlinear interactions within the retina reduce spatial correlations48. Nevertheless, 

spatial correlations seem to be essential at the population level to correctly decoding natural 

scenes rather than the collective latency of response49. Hence, latency coding supports the rapid 

and efficient transmission of the information at the level of individual ganglion cells50,51, whereas 

decoding of complex visual stimuli benefits of the redundant information encoded at the 

population level52. It is also recognized that the retina processes visual information as a whole, in a 

highly distributed manner, by involving several task-specific circuits. For example, beyond the 

simple classification of ON-OFF cells, a considerable fraction of cells is devoted to the detection of 

specific features, such as motion53. The direction of a moving object (or of a global shift in the 

image) is reported by distinct classes of ON-OFF (four classes), ON (three classes) and OFF (one 

class) retinal ganglion cells. Other cells respond accurately to the differential motion respect to the 

background motion, to approaching objects and, finally, to rapid shifts of the image (saccade) 

through the suppression of the spiking activity in a few ganglion cells. Similar to the center-

surround organization, each one of these cells responds vigorously to their preferred stimulus and 

are strongly inhibited by their anti-preferred stimulus. For instance, for a direction-selective cell, 

the preferred stimulus is motion in one direction, whereas the anti-preferred stimulus is motion in 

the opposite direction. Consequently, each retinal ganglion cells can encode two information at 

once, on the preferred and anti-preferred visual stimuli. For instance, motion sensitive retinal 

ganglion cells transmit the information of an object moving in the preferred direction by increasing 

their firing rate while the motion in the opposite direction is encoded as a significant decrease or 

total suppression of their firing rate. 

Techniques for population recordings of Retinal Ganglion Cells 
 

The process of formation of a meaningful image in the retina benefits of the correlations and 

timing-difference within spike-trains33 of distinct retinal ganglion cell belonging to a given 

population, rather than from individual cells independently54. As for a digital picture on a screen, 

although each pixel is carrying information, the image is meaningful only if it observed in its 

entireness. Consequently, the desirable tool to study the encoding of visual information in the 

retina should allow simultaneous recordings of a significant fraction, ideally all, of the retinal 

ganglion cells spiking activity, knowing the input light stimuli. Among the different 

neuroethologies that were used to this aim, retina whole-mounts on multi-electrode arrays 

recordings are a fundamental methodology. Here, I will review these devices and I will report 

some of the major findings obtained so far by recording retinal ganglion cells on these devices.  
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Retina whole-mount recordings on Multi-Electrode Arrays (MEAs) 

Passive multi-electrode arrays coupled with a visual stimulator provide a suitable technology 

for recording visually-evoked retinal ganglion cell resposnses36 although these conventional 

devices with a low-number of electrodes partially fulfill the requirements. These devices 

represented the turning point7 for investigating visual information processing occurring in the 

retina as they provide simultaneously spatial and temporal details of the spiking activity of a 

considerable number of retinal ganglion cells in a fully functional, yet explanted, living tissue7. 

Indeed, the layered structure of the retina is particularly suitable for generating a good coupling 

with planar multi-electrode arrays55 and consequently to record the extracellular potential of 

retinal ganglion cell contacting the electrode sites. Importantly, multi-electrode arrays can sense 

relatively high variations of the extracellular potential, ensuring the selectivity to signals coming 

from retinal ganglion cells56.  

The information acquired with this approach combined with visual stimulation also allows the 

functional classification of cells57, the evaluation of their receptive fields55 and of course the 

simultaneous monitoring of the spiking activity of different cell types58. Closed-loop stimulation 

further revealed nonlinear interactions among the subunits within the receptive field of retinal 

ganglion cells that can give rise to an increased sensitivity to small high-contrast details and, in a 

small population of ganglion cells, in an enhanced sensitivity to homogeneous visual scene59.  

Importantly, the approach of using iso-response stimuli, i.e., the application of different stimuli 

that result in a similar response of an individual ganglion cell and defined as spike count or latency 

to first spike59, revealed that distinct visual inputs generate virtually indistinguishable statistics at 

the single neuronal level, which might be encoded by neighboring cells. This finding strongly 

supports the need for large-scale recording techniques to investigate the interplay between single 

responses and population coding.  

The opportunity of monitoring at the same time the spiking activity of retinal ganglion cells has 

significantly advanced the knowledge of retinal processing: extensive classification of functional 

properties60 and characterization of receptive fields61 of retinal ganglion cells, sub-population of 

ganglion cells responding to periodic stimuli62, the anticipatory effect of motion38, the 

characterization of retinal waves63, the selectivity to differential motion between the center and 

the background64, the presence of ganglion cells that selectively respond to the reappearance of 

the same stimulus65. However, passive multi-electrode arrays have also drawbacks as the 

acquisition of an extracellular signal combined with the poor spatial sampling compared to the 

density of retinal ganglion cells. The dense electrode matrix provided a promising strategy to 

record nearly all retinal ganglion cells over a small patch of retina66,67. While passive devices are 

nowadays widely used, active multi-electrode arrays represent still a novelty in the field, with a 

few groups exploiting high-density technology that allows to cover up the retinal ganglion cell 

layer with a dense grid of electrodes68,69 to significantly improve the spatial sampling of the retinal 

output8,57,68 or the available recording area69. From the computational point of view, the increased 

spatial and temporal sampling required new sorting techniques to extrapolate the redundant 

information captured by neighboring electrodes66 and to refine the individual ganglion cell 

detection 70–72. High-content movies of a large fraction of retinal ganglion cells pose other 
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computational limitations such as handling a high volume of data and extracting relevant 

information out of the recordings in a reasonable amount of time (less than a working day).  

Local and long-range horizontal interactions shape the response of retinal 
ganglion cells 

 

An individual ganglion cell collects up to hundreds of inputs from bipolar cells73 that 

themselves receive inputs from a large pool of photoreceptors3. This converging pathway of 

information was largely investigated to understand the specific cascade of processing that gives 

rise to the extraction of complex features of the visual stimulus.  

The first evident consequence of this funnel-like wiring architecture is the concept of receptive 

field, i.e., the area of the visual space that directly influences the activity of cell upon stimulus 

presentation. Bipolar cells have a receptive field as a result of the connections to photoreceptors 

and, similarly, the convergence of multiple bipolar inputs onto a ganglion cell determine a 

receptive field that also inherits the features of the receptive field of bipolar cells. Historically, 

early quantification of the spiking activity recorded from the optic nerve revealed a correlation 

between the size and the intensity of a stimulus presented in the ganglion cell receptive field in 

triggering a response. Larger stimuli required less luminance intensity to elicit a response 

suggesting that encoding of visual information resulting from the integration of a pool of inputs 

coming from different locations41,85. However, the linear converging processing that is here 

described is an extremely oversimplification of the spatial integration of visual stimuli within the 

receptive field center. Indeed, the convergent processing is also modulated by inhibitory 

connections that mediate the interaction between photoreceptors and bipolar cells and bipolar 

cells and ganglion cells through horizontal and amacrine cells respectively. These cells provide 

both local and global inhibition. Locally, they regulate the activity of bipolar cells. Globally, they 

allow lateral transfer of information across the retina.  

A seminal work76 revealed signs of these non-linear transformations in the response of 

different cat retinal ganglion cells upon presentation of white/black reversing gratings of different 

spatial phases. The recorded retinal ganglion cells could be divided into two macroscopic classes 

based on their responses to the grating reversal. Linear cells, termed X cells, transiently increased 

their firing rate upon application of their preferred contrast in their receptive field, while the anti-

preferred stimulus determined a significant decrease in their firing rate. Importantly, excitation 

can balance inhibition for some spatial phases of the gratings, resulting in a negligible effect on the 

spiking response. Conversely, non-linear cells, named Y cells, increased their firing rate regardless 

of the polarity of the stimulus, i.e., at each stimulus reversal, regardless of the spatial phase of the 

grating.  

Several studies further characterized the properties of the receptive field center77–79 and their 

consequences on spatial integration5,59,80, which is not limited to the center, but also include the 

surround. The surround part of the receptive field of retinal ganglion cells has received an 

increasing attention48,81,82. The simple model of the center-surround organization as linear filtering 

do not always capture the modulation induced by the surround part of the receptive field as some 

stimuli activate the surround in a highly-nonlinear manner81. The surround part indeed, besides 
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providing a term of reference for the center, is involved in specialized tasks, such as regulating the 

sensibility to center signals while objects are moving in the surround83 and, hence, in the detection 

of local versus global motion64,84. Interestingly, remote stimulation, i.e., visual stimulation applied 

considerably far away from the receptive field of retinal ganglion cells, influence the spiking 

activity of retinal ganglion cells in several manners. In the cat retina, a widely and historically used 

animal model for retinal studies, gratings shifting in the remote periphery of a selected ganglion 

cells induce vigorous and time-locked with the grating shift responses85–87 that cannot be 

explained by the classical organization of their receptive field88. This phenomenon, termed 

‘peripheral’ or ‘shift’ effect, has been observed in retinal of several species including cats88, 

monkeys89, rabbit90 and salamander91.  

Historically, several experimental works reported examples of long-range lateral flows of 

information, termed periphery effect, within the retina. For instance, the presence of a stimulus 

far outside the classical notion of the receptive field could modulate the sensitivity and in turn the 

spiking activity of monkey retinal ganglion cells89. The continuous motion of grating located far 

away from the receptive field of a ganglion cell gave rise to an increase in the firing of the cell85 or 

a decrease92, while sudden remote motions induced a transient response consisting in a burst of 

spikes86,93. The increase or decrease in the retinal ganglion cell spiking activity has been associated 

with the spatiotemporal features of the remote stimulus pattern, thus suggesting the activation of 

both excitatory and inhibitory pathways88. The stimulation of the receptive field surround of 

retinal ganglion cells in salamander retinas, indeed, revealed a complex nonlinear spatial 

integration of the stimulus81 that resulted from a sub-unit organization of the receptive field 

surround, where each sub-unit was characterized by a center-surround architecture. The 

simultaneous monitoring of the retinal output provided by the full exploitation of multi-electrode 

arrays, indeed, revealed also that a moving object determined the pre-activation of the ganglion 

cells to anticipate the future location of the object, thus minimizing the latency of response for 

downstream processing38.  

Conversely, the sudden reversal of motion direction determined the synchronous firing of a 

large population of retinal ganglion cells, which possibly encoded the radical reversal at the 

population level94. The mechanism underlying this phenomenon was proven to occur at the level 

of bipolar cells, with a negligible contribution of amacrine cells. Additionally, when an object is 

moving, such as when stimulating the remote periphery with a randomly moving dark bar, several 

OFF retinal ganglion cells synchronize their spiking activity95. Peripheral inhibition also shapes the 

activity of ganglion cells devoted to object motion to minimize predictable input induced by 

fixational movements, thus enhancing the detection of objects differentially moving respect to the 

background64. 

Stimulation in the remote periphery is not limited to modulation of the spiking activity of 

ganglion cells96 but also has consequences on the neural coding of local stimuli82. Specifically, 

remote stimulation enhance retinal ganglion cell responses to local stimulation up to 1 mm 

increasing the sensibility to a broader range of contrasts suggesting a built-in mechanism of 

attention 91.   

Given the highly organized retinal anatomy13, the possible pathways of horizontal 

communication are represented by horizontal and amacrine cells12. However, while the first class 
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of cells is mostly devoted to the local regulation of the input, amacrine cells can have functional 

roles both locally or at long ranges depending on their sub-types, their morphology and horizontal 

extension. Furthermore, amacrine cells can form extensive networks among each other and tend 

to correlate the spiking activity of their target retinal ganglion cells22,47. Wide-field amacrine cells 

can innervate the inner plexiform layer with dendrites extending for millimeters3. Hence, their 

morphology suggests that long-range interaction within the retina might be more crucial in 

shaping the response of retinal ganglion cells than what was recognized so far. Additionally, 

inhibitory amacrine cells are known to spread laterally visual information inducing an excitatory 

effect on retinal ganglion cells as a consequence of synaptic disinhibition88. Amacrine cells are also 

involved in temporal processing providing the necessary inhibition to sharpen transient 

responses36. 

Overall, the functional relevance of long-range horizontal interactions within the retina, 

however, remains still unclear and deserves further studies. 
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Chapter IV - Development and application of 

data analysis tools for large-scale retinal 

ganglion cells recordings on CMOS-MEAs  
 

 

The analysis of the spiking activity recorded from a large number of retinal ganglion cells 

(RGCs) that can be obtained with high-resolution CMOS-MEAs imposes an important 

computational effort. This includes the pre-processing of the raw data that consists in the 

detection of spikes, the soring of the spikes to allocate them to single-units, the identification of 

functional types of retinal ganglion cells (RGCs) and of their receptive fields. To overcome the 

significant effort of human supervision determined by the usage of algorithms non-optimized for 

large-scale recordings, in this part of my work I have integrated an automated chain of analysis 

capable of pre-processing the 4096-electrode’s raw data. This development was crucial to 

accelerate the analysis and to proceed faster in the experimental investigation of data acquired 

from multiple retinas. The implemented suite of computational tools allowed reducing the 

analysis time from approximately, a week of continuous supervision (for a single retina) to  24h of 

unsupervised analysis with algorithms running in parallel on a small multicore cluster (48 CPUs) 

available in our laboratory.  

Experimental platform 
 

To perform experiments with visual stimulation of ex-vivo mice retina and high-resolution 

CMOS-MEA recordings, we used a setup that was developed in my laboratory during the 

RENVISION EC-funded project1. The experimental setup1–4 records the extracellular spiking activity 

of retinal ganglion cells while stimulating the photoreceptor layer through the presentation of 

visual images, see Fig 4.1A. To fulfill this task, it integrates three principal components: a digital 

light projector (DLP LightCrafter Evaluation Module5, Texas Instruments), the optical pathway and 

the CMOS-MEA recording system (a custom Biocam prototype developed using 3Brain 

components). Visual stimuli are image sequences that are projected on the retina using the DLP 

projector and that are collimated by the optical pathway on a retina lying on the electrode array 

of our recording system, see Fig 4.1B. The optical pathway was designed to correct light 

aberrations and to focus images of 664x664 pixels on the retina.  Each pixel approximately spans a 

4x4 μm2 square. All the mentioned parts are fully adjustable through micromanipulators to correct 

the collimation and alignment of the visual stimuli. Additionally, an external camera integrated 

into the optical pathway using a dichroic mirror allows the monitoring of the visual stimulation 

during the experiment. Fig 4.1C shows a picture of the experimental setup described so far.  
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In addition, the light provided by the projector was attenuated through a series of neutral 

density filters (ND 6) to obtain a final luminance of 0.11 cd/m2, which is in the range of mesopic 

light levels6–8. Under this luminance condition, which represents a physiological condition for 

mice, information about the visual scene is sensed in the retina by both rods and the cones9–11. 

The luminance contrast was quantified through the Michelson contrast convention. Specifically, 

we defined the contrast of the stimulus as 100*(Imax − Imin)/(Imax + Imin), where Imax and Imin are 

respectively the maximum and minimum luminance of the darker/brighter luminance and 100 is a 

constant multiplier used to obtain values in the range (0-100). In the following sections of this 

work, we will refer to the luminance contrast of the stimuli as CT, followed by the value obtained 

in the formula above (e.g., CT25, CT50, CT75, and CT100 as used in our experiments).  
 

 
 

Fig 4.1: Description of the experimental setup. (A) The photoreceptors are stimulated by a light source (in 

our case a DLP projector), and the extracellular potential variations induced by the spiking activity of 

retinal ganglion cells are recorded by a CMOS-MEA featuring 4096 electrodes. (B) The images generated 

by the projector are collimated on the retina by a series of lenses that focus and correct for aberration 

the visual stimulus. An external camera, integrated into the optical pathway allows the monitoring of the 

stimulus projected onto the retina. The optical pathway and the different parts of the setup are equipped 

with micromanipulator to adjust and calibrate the visual projecting system. (C) A representative picture 

of the setup sketched in (B). (D) An illustrative raw data recorded showing several spikes in different 

units and the sync channel, which carries the information to align the visual stimulation to the raw data: 

every time a new image is presented, a positive trigger signal is recorded by the BioCam system (sync 

channel). Image credit: Alessandro Maccione and Stefano Di Marco. 
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Importantly, in order to analyze light-evoked responses we had to develop a solution to record 

the time stamps of the projected images with the RGCs activity. In order to synchronize at a sub-

millisecond resolution the presentation of the images and recordings of the activity, we used a 

custom built device that reads the image stream from the display output and that generates a 

trigger every time a new image is projected (in the example of Fig 4.1D, one trigger every 33ms).  
 

 

 

Fig 4.2: Alignment of visual stimuli and raw data of light-evoked RGCs responses. (A) The HDMI output of 

the computer generating visual stimuli splits into two pathways. The first one feeds the DLP projector 

whereas the second one is processed by custom hardware to generate a trigger that is sent to the Biocam 

system and can be read as an electrode channel. (B) After the realignment of the images with the 

recorded time-stamps, it is possible to correlate the extracellular activity recorded by the CMOS-MEA 

electrodes and the stimulus. In this illustrative example, bars drifting at the temporal frequency of 1Hz 

elicited responses of retinal ganglion cells with different onset timings based on the RGCs location and 

preferred stimulus of the cells. Image credit: Alessandro Maccione and Stefano Di Marco. 

 

These time-stamps of the projected images are then recorded by the BioCam system and are 

sampled on an auxiliary electrode channel together with the extracellular signals recorded on the 

other electrodes, see  

Fig 4.2A. In this way, at the end of each experiment, the information about the visual stimuli (i.e., 

which stimulus was presented and when) and the recorded activity are available for analysis. The 

off-line alignment of the visual images allows appreciating the spiking activity elicited by different 
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stimuli, as shown in Fig 4.2B. In the latter example, the presentation of square-wave bars drifting 

at the temporal frequency of 1Hz induced the firing of several ganglion cells whose onset 

depended on their spatial position on the MEA and on their preferential stimulus.  

Importantly the offline procedure developed to realign the stimulation triggers with the 

projected images is time-consuming since it also requires verifying and correcting possible errors 

and mismatches between the triggers and the sequence of projected images. Hence, in my initial 

work, I implemented a tool to handle this realignment and to reduce the need for human 

intervention. Unexpectedly, as it will be described later, this implementation was also very helpful 

to identify a few artifacts that were induced by the visual stimulator and that were not identified 

in previous tests when the system was developed. Rather, the high sensitivity of the retina and 

the algorithms used in our analysis allowed us to detect these artifacts and to contribute to 

further improving the experimental setup.  



97 
 

Integrated analysis chain of light-evoked retinal ganglion cells responses 
 

The objective of this part of my work was to integrate a computationally light and 

unsupervised analysis chain capable to automatically detect and sort spikes, to assign each action 

potential to a single and cell-type specific RGC based on their light-evoked responses.  

The developed chain of analysis comprises a first stage that uses a recently published spike-

detection and spike-sorting algorithm3 that was developed within the RENVISION EC-funded 

project. Briefly, this algorithm was designed to exploit the high-resolution of our CMOS-MEAs by 

taking advantage of the spatial and temporal correlations of extracellular signals from the same 

neuron recorded by neighboring closely spaced electrodes. It allows to detect spikes and to assign 

them to a single unit and it also provides an estimation of the unit position in between the 

electrode sites. Following the event detection, I have developed custom algorithms to realign the 

spiking activity of each cell, the cell’s position and the spatial and temporal information of the 

projected light-stimuli. This was obtained by processing the electrophysiological data, the images 

used for the visual stimulation and the time-stamps acquired from the visual stimuli during the 

experiments. After this step, all relevant information regarding the experimental protocol was 

merged into a single Hdf5 file generated for each experimental phase and data were then ready 

for further spike-trains analysis. The developed tool only asks for human intervention to verify 

(and eventually correct) the alignment of the time-stamps of the visual stimuli with the recorded 

spiking activity. To do so, it also generates a set of report plots that the user can verify.  

Upon these first steps aimed at preparing the experimental data for further analysis, a custom 

suite of algorithms performs the analysis of the spike trains by exploiting the different types of 

visual stimuli implemented in our protocols. This includes full-field black and white flashes to 

identify the polarity of retinal ganglion cells and moving bars of different spatial gratings to rapidly 

estimate their receptive field properties (see later for further details and comparison of this 

method with Spike Triggered Average). In particular, the classification of RGCs was restricted to 

three main functional types (ON, OFF, ON-OFF), the computation of the time lag and peak of 

response to flash stimuli for each population, the estimation of receptive fields, the quantification 

of the peak and lag of responses for full-field flashes and the quantification of the Fourier 

coefficient at the temporal frequency of moving bars. These algorithms also provide images of 

comparison among different experimental conditions, such as “masked” and “full-field” stimuli 

(see the experimental study reported later) or “drug-treated” and “untreated” conditions. All 

these analyses are automatically selected or unselected by the analysis tool itself that I developed 

in Python. Briefly, an unsupervised algorithm tries to understand the rationale of each 

experimental phase using the information extracted in the first part of the analysis process (e.g., 

the type of visual stimuli for each phase, the annotation tags that the experimentalist included). In 

this way, also a not expert user can run the analysis and rapidly evaluate the outcome of the 

experiments. In the next paragraphs, I will shortly describe the computational methods that I 

developed and used to classify retinal ganglion cells and to estimate their receptive fields.  
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Selection and classification of retinal ganglion cells based on light-evoked 

responses 

In all our analysis, we adopted a conservative approach and restricted our study on a subset of 

selected RGCs. In order to define a selection criterion, we restricted our analysis to only those 

cells whose interspike-interval (ISI) distribution for static iso-luminant gray stimuli and white/black 

flashes at maximum contrast differed significantly (Kolmogorov-Smirnov test). This 

straightforward criterion to filter out RGCs was derived from a similar implementation that I have 

performed for the analysis of spike trains in neuronal cultures (in collaboration with my colleague 

H. Amin) and that was previously used to study a culture model of Alzheimer disease12. In our 

retina experiments, out of all recorded RGCs, typically about 40-50% did not satisfy this criterion 

and were not included in our conservative analysis. Nevertheless, it has to be highlighted that 

given the large number of recording electrodes in our system, we typically considered in our 

analysis a total of 500-1500 of single RGCs for each retina.  

To functionally classify each recorded unit as either ON, ON-OFF or OFF type RGCs I developed 

a greedy template matching approach13. The implemented method assigns a label to each RGC 

depending on the shape of the cumulative distribution of the spike trains in response to 

alternating flashes from light to dark and repeated 20 times at maximum contrast. This 

classification is based on the cumulative distributions of the spike trains rather than on specific 

features of single RGC responses. Indeed, we found that, given the large set of possible responses, 

very often it was not straightforward to assign a label using hard thresholding on specific response 

features. Interestingly, the measure that I have used to distinguish between the different 

distributions does not require any binning and it reflects the way a human observer would use to 

discriminate between functional types by looking at the evoked responses.  

This measure named as “the earth mover's distance”14, quantifies the distance between two 

distributions. Specifically, if one interprets the two distributions as a certain amount of sand 

distributed over the same region, this measure quantifies the total work needed to move the sand 

from one distribution to the other as it would be needed to match the two distributions. In our 

case, this idea was used to compute the “cost” of turning the experimentally measured spike train 

distribution into the expected distributions for ideal ON, OFF or ON-OFF RGC responses. Once the 

earth’s mover distance between the cell response and each template was computed, we assigned 

a label to the RGC by considering the template that better approximated the experimentally 

recorded distribution. The drawback of this approach is the need to define proper templates. To 

do so, I used an unsupervised clustering method, named Laio’s clustering from the author who 

proposed the approach15. Briefly, this clustering algorithm first computes the local density of 

responses of any given retinal ganglion cell, namely how many other retinal ganglion cells exhibit 

a similar response based on a hard threshold on the distance measure (in our case the earth’s 

mover distance).  

The choice of this threshold, although arbitrarily, does not affect the results of the clustering 

as it serves only as a local descriptor for similarity. We chose this distance such that less than 1% 

of cells had a local density of 1, as suggested by the authors of the method. The core idea of the 

method is that if there is a cluster of similar responses, then at least one cell exhibits a maximal 
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local density, which summarizes the properties of the group. To select the proper response 

template, it is enough to look at the distance between the candidate cell and all the other cells 

that exhibit a higher local density. Indeed, by plotting the local density against the minimum 

distance respect to all other higher density points, it is possible to select the representative 

responses of the cluster by looking at the outliers of the distribution, see Fig 4.3A. Indeed, these 

outliers represent cells whose responses are locally similar to the others, hence representative, 

and at the same time, far apart from any other representative response. For further details 

regarding this clustering method see15.  

This clustering approach is exemplified in Fig 4.3, where the typical responses of ON, ON-OFF 

and OFF cells to white and black alternating stimuli have been simulated by sampling their time 

stamps of response from the average spike-train response distribution of visually identified ON, 

ON-OFF and OFF cells. This choice for the functional classification of RGCs type is particularly 

suitable for large-scale recordings for the following reasons:  

 

1. The response of retinal ganglion cells to white and black alternating stimuli is not sharply 

defined as ON or OFF responses but exhibits a continuous interval of responses bridging 

markedly ON and markedly OFF responses. Consequently, the concept of distance and 

density among cells via the earth’s mover distance is well-defined. 

2. The classification takes into account the whole dynamics of the response of each cell 

instead of relying on a subset of response features (such as the peak or the lag of response 

to the onset of brighter/darker plain stimuli). 

3. It does not require the decision of any hard thresholding to classify cells. Specifically, by 

interpreting the spike trains as distributions, we are intrinsically normalizing all the cells 

with respect to a number of elicited spikes. Hence, it is straightforward to compare low 

firing and high firing cells because the method is only sensitive to how the spikes are 

distributed in time rather than their amount. 

4. It can be extended to classify cells based on a larger set of templates (for instance when 

including sustained vs. transient responses). 

5. Once the templates are assigned by grouping a subset of experiments, the clustering is not 

anymore required and the templates that were identified can be used as ground truth for 

the next experiments. 

6. The entire procedure does not require binning the spike trains, thus preventing from 

deciding a priori the bin size or from using smoothing functions that might affect the 

overall analysis.   

7. By looking at the whole spike train distribution, this method also takes into account silent 

intervals of the cell’s activity. 
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Fig 4.3: Illustrative example of clustering simulated ON, ON-OFF and OFF cell’s responses using the Laio’s 

clustering approach adopted in my work. (A) The outcome of Laio’s clustering determines a few outliers 

that represent the cell-type specific templates and that can be used for classification. (B) Cumulative 

distribution of simulated retinal ganglion cell responses (each cell is a blue line). Colored traces represent 

the templates selected in (A). (C) Color coding of the cumulative responses shown in (B) according to the 

selected template (red: 1000 OFF-cells, orange: 1000 ON-cells, green: 1000 ON-OFF cells). 

 

This data-driven classification method, together with the selection of RGCs based on their ISI 

distribution, provides a conservative approach for analyzing our dataset acquired from different 

retinas. Importantly,  this is possible because all the classified responses were selected based on a 

unique set of templates. Furthermore, this method ensured that the analysis of peak and lag 

response to full-field alternating stimuli was not biased by an arbitrary threshold, which was 

inherently data-driven in this approach. However, the choice of using full-field stimuli to classify 

the polarity of the cells, although widely used, might not be the more appropriate. Indeed, it was 

reported that in full-field stimulation of mouse retina, a subclass of OFF retinal ganglion cells could 

exhibit an ON-OFF response if the stimulus is applied in full-field condition16. Consequently, to 

handle this issue in our analysis, we have filtered out this subclass of cells and we investigated the 

response of purely ON and purely OFF retinal ganglion cells exposed to full-field stimulation, thus 

excluding (at this stage of implementation) ON-OFF responses for this type of stimuli. 

 



101 
 

Fast receptive fields (RF) estimation   

To estimate the receptive field (RF) properties of the recorded RGCs, we adopted a 

computationally fast approach. Rather than using an approach based on Spike Triggered Average 

(STA), our approach is based on the analysis of the light-evoked responses of RGCs to bar stimuli of 

different spatial gratings and moving in a single direction at the temporal frequency of 1Hz. The 

rationale underlying this approach is that the response of the RGCs should be maximal for a 

preferred size of the moving bar stimuli. Thus, by assuming that the receptive field can be 

approximated with a difference of Gaussian, and by exploiting our high-resolution CMOS-MEAs 

recordings, we can provide a rough estimation of the receptive field properties by fitting the DoG 

model17 to the response of the cell elicited by stimuli at different spatial gratings. It has to be 

noted that here we used bar stimuli moving in a single direction as a first approximation of the 

receptive fields. However,  the same approach can be easily refined by considering moving bars in 

different directions. Interestingly, a similar approach was recently proposed to quantify the 

receptive field size of neurons in the visual cortex18. 

 

 
 

Fig 4.4: Fast receptive fields estimation based on the analysis of RGCs responses to bar-stimuli at different 

spatial frequencies and moving at the temporal frequency of 1Hz. (A) An exemplary raster of a retinal 

ganglion cell responses to bar stimuli for different spatial grating (0.011-0.17 cycle/deg). In this example, 

five different gratings were projected at full-field and repeated twenty times (each row depicts the 

response for each repetition and for each grating). (B) The Fourier transform of the light-evoked spike 

trains of each RGC is computed for each grating and the coefficient associated to the temporal frequency 

of the moving bars (1 Hz) is used to quantify the tuning curve of the cell. The measured points are fitted 

to a difference of Gaussian model to estimate the relevant parameter of the receptive field (solid line). 

(C) Plot of the receptive field center and size estimated for all the retinal ganglion cells recorded in an 

experiment. The color of the circle codes for their size. The mean diameter of the receptive field center 

obtained was 314±105 μm whereas 605±243 μm for the surround. 

 

In our experiments we used moving bars of different spatial gratings in the range 0.011-0.35 

cycle/deg (corresponding to linear bar widths of 1344-42 μm, Fig 4.4A) and the Fast Fourier 

Transform (FFT) component at the same frequency of the bar motion of 1Hz as a measure of the 

response, see Fig 4.4B.  
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As shown in Fig 4.4B, while low spatial frequencies maximize the activation of the surround 

inhibition, the increase of spatial frequency determines the decrease of the inhibition with respect 

to the center excitation, until the match between the width of the bar and the size of the center of 

the receptive field. Further increasing the spatial frequency of the grating determines a sudden 

decrease of the firing of the cell as it is not able anymore to resolve finer and finer details. As 

illustrated in Fig 4.4C for one retina, we performed this computation for all recorded RGCs over a 

field of view provided by CMOS-MEAs of 2.67 x 2.67 mm2. 

In order to assess the results obtained with this method, we cross-validated our results with 

the receptive fields estimation obtained with the Shifted White Noise (SWN) approach19 that was 

developed in the RENVISION project. The latter method is a modified version of the Spike 

Triggered Average (STA) approach in which the randomly flickering checkerboard stimuli also 

include grid jitters to obtain more accurate estimations of the receptive fields by exploiting 

concepts from super-resolution19. The quantification of the estimation errors (Fig 4.5A) of our 

method with respect to the SWN revealed that our approach provides a reasonable approximation 

of the RGCs receptive fields. Indeed, most of the receptive fields were estimated almost correctly, 

with an error below 25%. Furthermore, the distribution of the differences between the two 

estimation approaches has a Gaussian shape profile centered in zero, thus indicating that the 

estimation of the receptive field is not biased towards underestimations or overestimations, see 

Fig 4.5B. In addition, although the estimation of the receptive fields is much more accurate with 

the SWN approach, our approach is suitable for fast screening. Indeed, it is computationally cheap 

and it requires a short experimental time of just 3 min, compared to the 30 min required for SWN. 

Bar stimuli moving in different directions can definitely improve the accuracy of this approach, and 

we are currently planning to apply the core ideas underlying this method to propose a fast, 

reliable and as accurate as possible real-time screening for estimating the size of receptive fields. 
 

 
 

Fig 4.5: Measured receptive fields estimation error of our method based on moving bars (MB) with 

respect to the method of shifted white noise (SWN). Shifted white noise and moving bars stimuli were 

applied to the same retina. (A) Comparison between the receptive field estimation obtained with the 

SWN (orange circles) and with the moving bars (MB, blue circle) and for different intervals of the 

estimation error. The majority of the cells are correctly estimated with an error ≤25%. (B) The estimation 

error between the MB and SWN approach is distributed as a Gaussian centered in zero, thus indicating 

that the MB estimation is not consistently over/underestimating the receptive field sizes. 
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Identification of visual stimulation artifacts through the analysis of RGCs 
light-evoked responses 

 

The light-evoked spike-trains of RGCs acquired with our setup are extremely informative of 

the stimulus that was presented and allowed me to identify some artifacts introduced by the light 

projector that were not detected by the optical characterization of the system. By analyzing these 

data, I discovered that our visual stimulator was not reliably projecting the stimulus, but rather 

projected a slightly modified version of it. In particular, it introduced weak modulations of the 

light intensity that were not perceived by our eyes but that were correctly encoded by the RGCs in 

their spike trains. The retina indeed is very sensitive to these small amplitude variations and 

converted them into changes in spiking activity in a robust and reliable fashion.  

 

 
 

Fig 4.6: Detection of stimulation artifacts. (A) Alternating dim and bright stimuli of three different 

contrasts (CT25, CT50, CT100) has been presented in the upper corner of the retina while leaving an iso-

luminant gray in the remaining part of the retina (masked area). (B) Activation map of the retinal 

ganglion cells upon stimulation. For each RGCs the change in its ISI distribution between stimulation 

phase and baseline has been quantified through the p-value of the Kolmogorov-Smirnov test. Solid red 

lines highlight the borders of the mask (A). At low and high contrast (CT25 and CT100), the activation of 

RGCs is confined in the non-masked area of the stimulus. At CT50, the activation map reveals that both 

masked and unmasked RGCs are actively responding to the stimulation. (C) After a careful analysis we 

discovered that, although the stimulus sent to the projector was correct (A), internal optimization 

routines of the projector modified it at CT50. 

 

Specifically, we encountered these artifacts while stimulating with white and black alternating 

flashes in the presence of an iso-luminant gray mask on the stimulus, as shown in Fig 4.6A. In the 

illustrative example of Fig 4.7A, we presented on the stimulated area a sequence of alternating 

white and black flashes at CT25, CT50, CT100 respect to the iso-luminant gray that covers the 

masked region of the retina. The analysis of changes in the interspike interval (ISI) distribution 

between the stimulation phase and the baseline condition (a full field iso-luminant gray stimulus) 
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revealed a tight correspondence between the activated cells and the position of the stimulus, as 

shown in the activation map of Fig 4.6B where the p-value of the test has been color-coded to 

highlight the change in the ISI distribution upon stimulation. However, at CT50 respect to the iso-

luminant gray, the map of response (Fig 4.6B, middle panel) is significantly different. Indeed, for 

this specific stimulus, a relevant fraction of the RGCs exposed to the iso-luminant gray stimulus 

changed their interspike interval distribution respect to their baseline.  

The quantification of the population response for ON and OFF RGCs that are exposed or not to 

the stimulus (Fig 4.6B, middle panel), revealed a reliable and significant response of the RGCs 

under the mask, which were not expected to change their spiking activity as they were not 

directly experiencing the visual stimulation. I found that this change in the spiking activity was due 

to the projector that was modulating luminance of the gray mask, in counter-phase with respect 

to the stimulus projected in the stimulated region of the retina, see Fig 4.6C. In the masking 

condition, we observed this artifact for an interval of contrasts ranging from CT30 to CT67. 

However, we also found that this effect also depended on the size, position, and shape of the 

mask. Indeed, very often we observed that different masks applied to the same stimulus 

determined opposite behaviors of the projector. A second artifact was discovered upon 

measuring the light intensity with a optical power meter and it is a long-lasting adaptation (3 to 

5s) of the overall luminance of the stimulus at the end of a stimulation sequence.  

In order to fix these issues we empirically found a counter-measure. Specifically, we modified 

the software that sends the images to the projector to constantly display a sequence of blocks of 

different grays over a region that is not projected on the retina. So far, constraining the projector 

to constantly displaying a range of blocks spanning the whole range of contrasts (CT25-CT50-CT 

75-CT100) has completely abolished the insurgence of the mentioned artifacts. To further ensure 

that the stimuli presented were exactly as designed, we cross-validated the visual stimulation with 

an optical power meter (PM 130, Thorlabs20). Indeed, the set of stimuli used in this work were 

simple enough to measure the luminance of the masked and not masked regions directly. These 

unwanted effects were not observed for full-field stimuli and were removed for the masked 

stimuli after having adopted the proposed fix. 

Investigating the effects of the spatial extension of visual stimuli on local 
RGCs responses 

 

The large-scale recording capabilities of high-density multi-electrode arrays together with the 

visual stimulation performances of our setup (sub-millisecond time precision, 4x4 µm2 light-pixel 

resolution) and the data analysis tools developed in my work allowed us to start investigating 

possible effects of long-range interactions in shaping the light-evoked responses of RGCs. In 

particular, we designed a stimulation protocol with the aim to study whether the extent of the 

stimulated area of the retina might affect light-evoked spiking activity responses of RGCs.  

To this end, the protocol (Fig 4.7) consisted in projecting on the retina a set of simple stimuli 

consisting of black and white flashes (Fig 4.7A) and moving bars (Fig 4.7B) of different spatial 

gratings, under two different conditions. The first condition consisted in applying these visual 

stimuli over the entire retina (“full-field” condition). The second consisted in applying the same 



105 
 

stimuli by confining them onto a small area of the retinal area (“masked” condition). Under this 

condition, the remaining part of the retina was exposed with an iso-luminant gray. In addition, we 

recorded RGCs responses under these two conditions using stimuli with different contrasts (25%, 

50%, 75%, 100%, Fig 4.7C), both for flashes and moving bars. The location of the exposed area 

under the masked stimulation condition (referred next as non-masked area) was selected during 

the experiment based on the achieved retina-to-chip coupling. For the analysis, we evaluated the 

response profiles of the ON and OFF main classes of RGCs responding to such stimuli and that 

were located in the area that was always exposed to the patterned stimuli under the two 

conditions. In the next paragraphs, we will refer to these RGCs as “always exposed RGCs” or 

aeRGCs.  
 

 
 

Fig 4.7: Experimental protocol of “full-field” and “masked stimuli” used to investigate the effects of long-

range interactions on RGCs light-responses. (A) Black and white alternating flashes and (B) moving bars at 

different gratings were projected on the retina, either in full-field or masked conditions. (C) The stimuli in 

(A-B) have been tested at four different contrast levels. This allowed evaluating how the extent of the 

stimulated area might affect the light-evoked spiking activity of RGCs that are always exposed to the 

stimulus (aeRGCs). 

 

Timeline of the visual stimulation protocol 
 

The experimental protocol used for visual stimulation is organized as shown in Fig 4.8A and has a 

total duration of approximately 100 minutes for each retina. The total duration is inline with 

previous experimental investigations that have indicated a stable and reliable response of the ex-

vivo tissue for experiments lasting less than 150-200 minutes. Each trial for a set of visual stimuli 

includes both full-field and masked conditions and has a duration of 25 minutes. Finally, each set 

of visual stimuli includes five different stimuli: Flash CTALL, Bars CT25, Bars CT50, Bars CT75 and 

Bars CT100. All these visual stimuli were projected considering three main phases: 

Phase I, or “Initial baseline”: at the beginning of each protocol 60s of iso-luminant gray are 

presented to the retina 

Phase II, or “Stimulation phase”: after the initial baseline, a different set of images, 

depending on the visual stimulation protocol, is presented to the retina 
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Phase III, or “In-between baseline”: at the end of the stimulation phase, the retina is 

readapted to the isoluminant gray 

 

Phase II and Phase III are then iterated to build up every single protocol of stimulation that lasts 

260s. The sequence of these protocols of stimulation is organized as shown in Fig 4.8B: 

1. Flash CTALL: White and black alternating flashes of increasing contrast 

Phase II is a sequence of 40 images switching every 500ms that consisted of alternating 

dim and bright uniform images while Phase III lasts 30s. 

After Phase I, both Phase II and Phase III are repeated by changing to CT25, CT50, CT75 and 

CT100 the contrast of the dim and bright images presented Phase II. 

2. Bars CT25: Moving bars in a single direction at the temporal frequency of 1Hz at CT25 

Phase II consists of a sequence of images displaying dim and bright bars at CT25 that 

periodically move at the temporal frequency of 1Hz in a single direction. Phase II lasts 20s, 

while Phase III is always set to 10s, except for the last repetition that lasts 30s. 

After Phase I, both Phase II and Phase III are repeated by changing the spatial frequency of 

the bars displayed during Phase II to 0.750, 0.090, 0.045, 0.365, 0.180 and 0.022 cycle/deg, 

respectively.  

3. Bars CT50: Moving bars in a single direction at the temporal frequency of 1Hz at CT50 

Identical to protocol 2 (Bars CT25), except for the increased contrast (CT50) between dim 

and bright bars. 

4. Bars CT75: Moving bars in a single direction at the temporal frequency of 1Hz at CT75 

Identical to protocol 2 and 3 (Bars CT25, Bars CT50), except for the increased contrast 

(CT75) between dim and bright bars. 

5. Bars CT100: Moving bars in a single direction at the temporal frequency of 1Hz at CT100 

Identical to protocol 2,3 and 4 (Bars CT25, Bars CT50, Bars CT75), except for the increased 

contrast (CT100) between dim and bright bars. 

 

Before starting the experiment and during the time intervals between different stimuli, an 

isoluminant gray stimulus, identical to the one presented during Phase III of each protocol of 

stimulation, is applied to the retina.  

Protocols 1-5 are firstly presented in full-field condition and afterward in masked stimuli 

conditions. 
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Fig 4.8: Time course of the visual stimuli used for the full-field-masking protocol. (A) The visual 

stimulation begins in full-field condition (i.e., the stimuli are presented to the whole retina) and 

subsequently, the masks are superimposed to the stimuli (e.g., Mask 1, Mask 2 and Mask 3). Each 

stimulation condition lasts approximately 25 minutes during which five different visual stimuli are 

presented: alternating flashes of four different contrasts (Flash CTALL, gray), moving bars in a single 

direction at different contrasts, namely CT25 (Bars CT25, light blue), CT50 (Bars CT50, cyan), CT75 (Bars 

CT55, magenta) and CT100 (Bars CT100, blue) contrast. (B) The Flash CTALL starts with 60s of iso-luminant 

gray, 20s of dim and bright alternating flashes at CT25 switching every 500ms, 30s of iso-luminant gray, 

20s of dim and bright alternating flashes at CT25, CT50, CT75, CT100 switching every 500ms interleaved 

with 30s of iso-luminant gray. The moving bars stimuli consists of bars of different spatial gratings 

moving in a single direction at the temporal frequency of 1Hz. Each of these stimuli (Bars CT25, CT50, 

CT75, CT100) differ in their contrasts between dim and bright bars. They start with 60s of iso-luminant 

gray. After the initial baseline, 20s of moving bars at 0.750, 0.090, 0.045, 0.365, 0.180, 0.022 cycle/deg in 

spatial frequency are interleaved with 10s of iso-luminant gray.  

Assessing the visual stimulation confinement capability of the setup 

As a first step, we assessed the capability of our visual stimulator to spatially confine the light 

stimuli on the retina as required to implement the masked stimulation condition. As shown in Fig 

4.9A,B, the application of the masked stimuli yielded a nearly negligible scattering effect that 

induced a change in only in a few cells (<2%) of the ISI distribution between the baseline activity 

recorded with an iso-luminant gray stimulus and the spiking activity recorded during the visual 

stimulation. These changes might have been originated by causes other than light-scattering, such 

as, for instance, a changing coupling between RGCs and the electrodes, an incidental variation of 

the firing rate or a false positive RGC included in the dataset. Consequently, given the aim of this 

work, these effects were accounted as part of the intrinsic heterogeneity of the tissue and of our 

recordings.  



108 
 

On the other hand, the confined stimulus activated aeRGCs similarly than in the full-field 

stimulation condition. Importantly, the p-value map shown in Fig 4.9B reveals sharp boundaries 

between responsive and silent RGCs. These boundaries tightly overlap with the borders of the 

applied mask (solid cyan box). Furthermore, under the masked stimulation condition the array-

wide spike count for either ON, ON-OFF, and OFF RGCs that were exposed to the iso-luminant 

gray did not exhibit any stimulus-dependent response (gray line, Fig 4.9C) as, on the contrary, it 

occurred for aeRGCs (colored lines, Fig 4.9C). All in all these observations indicated that our setup 

could spatially confine the visual stimuli in the region of interest (non-masked area). 

 

 
 

Fig 4.9: Assessment of the stimulus confinement and localized RGCs response. False-colour map of the p-

value associated with the change in the ISI distribution for each active electrode side of the array, upon 

full-field (A) and masked visual stimulations (B). The cyan square area highlights the always exposed 

RGCs (aeRGCs), namely those cells that experience the same stimulus in both full-field and masked 

stimuli condition. (C) Population response of ON, ON-OFF and OFF cells to alternating white and black 

flashes for aeRGCs (colored lines) and RGCs under the mask (gray lines), thus revealing that the stimulus 

is spatially confined to the imposed non-masked area. 
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Simulated and recorded effects on RGCs responses to a confined visual stimulation  

After having assessed the capability to spatially confine our visual stimuli we investigated 

whether the responses of aeRGCs (RGCs that are always exposed to the stimulus under both 

masked and full-field conditions) for each retina were affected by the masked stimuli with respect 

to the full-field stimuli. For the analysis, we selected and classified the aeRGCs into ON and OFF 

cells (Fig 4.10A). We quantified two biophysical indexes for each cell: the maximum firing rate of a 

cell elicited by the stimulus presentation (peak) and the time required to reach the peak value 

(lag), see Fig 4.10B. Note that the peak value of response can be associated with the strength of 

the RGC response, whereas the lag denotes the inertia (or responsiveness) of the cell upon 

presentation of the preferred stimulus. In order to quantify these indexes, we smoothed the 

instantaneous firing rate of each cell (computed by binning the spike trains at each millisecond) 

using an averaging time-window of 25 ms. Successively, we averaged the stimulation trials for 

each aeRGC to compute their peak response as the maximum value of the smoothed curve in the 

light phase of the stimulus for ON cells and, respectively, the dark phase of the stimulus for OFF 

cells. The corresponding lag of response was computed as the time interval from onset of the 

visual stimulus (light or dark phase) and the corresponding peak of the response. The statistical 

significance of differences between full-field and masked conditions was evaluated using a paired 

t-test (two-tailed) at 0.05 level. The peak and lag21 computed for a single representative ON 

aeRGCs under the two stimulation conditions (white flash at the minimum contrast CT25) are 

shown in Fig 4.10B. As shown, the two stimulation conditions gave rise to a different peak and lag 

values.  

In order to interpret the experimental data we also simulated the expected peak and lag 

responses of ON and OFF aeRGCs. The classical idea of receptive fields predicts that the aeRGCs 

peak of response should equal or increase its magnitude upon application of the masked stimuli, 

see Fig 4.11. Indeed, the visual stimulus covering the receptive field center of these cells is 

precisely the same by construction. Consequently, the responses of aeRGCs in full-field or masked 

stimulation conditions should be nearly indistinguishable (or slightly increased) because the mask 

can cut part of the inhibitory domain of the receptive field surround of these cells. 
 

 
 

Fig 4.10: Quantification of retinal ganglion cells responses to flash stimulation. (A) Cumulative spike train 

distribution to alternating white and black flashes (20 repetitions) for both OFF and ON aeRGCs (each line 

represent a single cell). (B) The peak of response is the maximum firing rate of the aeRGC elicited in 

response to its preferred stimulus, whereas the lag of response quantify the time interval between the 

stimulus onset and the peak amplitude of the firing rate. 
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However, as shown in Fig 4.10B, the exemplary ON aeRGC behaved differently than predicted 

by the model. Specifically, in full-field stimulation condition, the peak firing rate of the cell rapidly 

reached the peak value of ≃85 Hz after a typical lag of ≃210 ms (Fig 4.10B, black line). In contrast 

to the prediction of the classical receptive field model, under the masked stimulation condition, 

the peak amplitude decreased significantly to ≃65 Hz (Fig 4.10B, red line) and the lag of the 

response upon mask application increased by ≃30 ms with respect to the full-field stimulation 

condition. Differences between the simulated and experimentally measured responses can also 

be appreciated in Fig 4.10B that reports results for all the measured RGCs of an entire retina. 

Such an attenuated response observed in our experiments with the masked stimulation 

condition might be consistent with a partial overlap between the receptive field center and the 

stimulus. However, this phenomenon can occur only in those cells that experienced a different 

overlap between the stimulus and the center part of the receptive field. This argument does not 

apply to aeRGCs, whose receptive field center, by definition, is within the non-masked area. Also, 

note that aeRGCs were selected with a conservative approach and in a spatial window consisting 

in an area that was 4 electrodes far from the border to the mask (≃160 μm). Therefore, our 

results suggest that the portion of the retina that is not directly stimulated in the masked 

stimulation condition mitigates the inhibitory contribution on the receptive field of aeRGCs 

observed in the full-field condition. As reported in the false-color map of Fig 4.11B, most of the 

aeRGCs decreased their peak of response in the masked condition with respect to the full-field. In 

the next sections, we report the results of the analysis for the peak and lag of the responses 

performed on different retinas and for specific ON and OFF RGCs populations. 
 

 

 
 

Fig 4.11: Simulated and experimentally measured change in response peak according to the classical 

receptive field model and experimental data. (A) Classical receptive field model. As a function of the 

overlap, a cell responds by increasing its firing rate (center part of the graph). Once the mask goes 

beyond the boundaries of the receptive field center, the cell decreases its firing rate as a consequence of 

the inhibitory surround (right part of the graph). (B) False-color map of the change in the peak response 

for simulated and experimental data of an entire retina. 
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Masked stimuli reduce the peak response for both ON and OFF exposed RGCs populations  

In order to test whether the effect reported above was specific for a particular population of 

RGCs, we divided the aeRGCs as ON and OFF cells according to their spike train distribution. For 

each cell in the population, we computed its peak and lag of response. This was used to assess if 

the effect observed in the exemplary single ON aeRGC shown in Fig 4.10C holds true for both ON 

and OFF populations, as reported in Fig 4.12. We pooled data from 2023 ON aeRGCs and 1141 OFF 

aeRGCs recorded from four different retinas and using three different masks for each retina.  

The quantification of the peak difference across this large set of cells revealed interesting 

properties, see Fig 4.12A. First of all, although the result obtained is not significantly different for 

all the contrasts (e.g., in OFF aeRGCs p=0.32 and p=0.13 for CT25 and CT75, while in ON aeRGCs 

p=0.16 for CT75), our analysis shows that the reduction of the peak firing rate is robust across 

retinas and mask’s locations. Second, the reduction seems to affect more the ON population than 

the OFF population (-21% vs. 12% average decrease), thus suggesting a higher sensitivity to the 

presence of the mask for ON aeRGCs compared to OFF aeRGCs. It should also be noted that in full-

field condition OFF cells increment almost linearly their responses depending on the contrast of 

the stimulus. The same trend is preserved in the masked condition. On the other hand, the peak 

of response for ON RGCs in full-field condition reaches a saturated response at 75% contrast with 

respect to the iso-luminant gray. However, also in this case, the curve obtained for the masked 

condition mimics the one obtained for the full-field except an almost constant offset.   

Consequently, our results show that the masked condition (addition of a mask of uniform iso-

luminant gray) lowered the peak response curve for both ON and OFF aeRGCs without changing 

the envelope.  

 

Masked stimuli reduce the lag of response for ON and OFF exposed RGCs populations  

Under masked stimulation condition, our results show that the latency of ON aeRGCs 

increased significantly and independently from the applied contrast, see Fig 4.12B. Instead, the 

latency of OFF aeRGCs was significantly increased by 41±12 ms compared to the full-field 

condition only for low contrast stimuli and it was nearly the same for contrast stimuli ≥ CT50, see 

Fig 4.12B. 

This analysis reveals that the effect of the masked stimulation condition on the light-evoked 

response of aeRGCs is not limited to a reduction of their peak firing rate, but it also affected the 

responsiveness of aeRGCs. However, this effect is more significant for ON than OFF aeRGCs. 

Specifically, as shown in Fig 4.12B, the OFF population delayed the response to the masked 

stimulation only at low contrast (CT25) while the lag difference for higher contrast stimuli was 

almost negligible (169±46 vs. 173±41 ms). On the other hand, the ON aeRGCs significantly delayed 

the response for all contrasts except for CT50, resulting in a 21±36 ms average increase of the lag. 

Similarly to the peak response curves, the ON aeRGCs lag response curve in masked stimuli 

condition closely followed the trend of the full-field stimulation one. Conversely, the lag response 

curve of OFF cells in masked stimulation condition was not only shifted with respect to the full-

field one but also displayed a substantial difference, in particular at CT25.  
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Fig 4.12: Population responses to full-field (black) and masked (blue) black and white alternating flashing 

stimuli as a function of the contrast, for ON and OFF always exposed RGCs (aeRGCs). Compared to the 

full-field condition, the masked condition decreased the peak amplitude of both ON and OFF populations 

(A) while the responsiveness of the ON population was significantly more delayed than OFF aeRGCs (B) 

by the mask application. Asterisks mark a significant difference p=0.05. The data represent the pooling of 

three different masks for each retina and a total of 4 retinae (2023 ON aeRGCs, 1141 OFF aeRGCs). Paired 

t-test *p<0.05,**p<0.01,***p<0.001. 

 

 

GABAA-blockade partially recovers population response differences between masked and full-field 
conditions 
 

As previously shown, the reduced amplitude of the response peak is somehow counterintuitive 
to explain based on the classical notion of receptive field. Hence, as a first attempt to dissect the 
potential mechanism underlying our observations we selectively blocked the inhibitory 
transmission mediated by GABAA trough application of 30µM of bicuculline (N=2 retinas, 3 masks 
per retina, 464 OFF aeRGCs and 636 ON aeRGCs). The rationale behind this choice was to impair 
the medium/long-range inhibitory transmission that is mostly, although not entirely, mediated by 
GABAA

22. However, it is important to highlight that this pharmacological manipulation is not 
specific, since GABAAergic transmission is not solely mediating long-range interactions through 
amacrine cells, but also the horizontal processing occurring at the level of horizontal cells23. With 
this caveat in mind, we compared the response to full-field and masked stimuli upon 
administration of bicuculline to evaluate whether GABAAergic transmission contributes to the 
observed differences between full-field and masked stimulation conditions.  

Our results show that upon bicuculline administration the peak of response resulted in an 
almost linear dependence on the contrast, see Fig 4.13A. However, independently on the contrast, 
the peak of response was significantly reduced in the masked stimulation condition respect to full-
field stimulation, for both ON and OFF aeRGCs. On the other hand, the administration of 
bicuculline drastically reduced the differences in the lag of response to full-field and masked 
stimulation conditions. Precisely, the OFF aeRGCs lag response curves practically overlapped for 
the two stimulation conditions, while the ON aeRGCs still exhibited a delayed but not significant 
response in masked stimuli condition respect to full-field stimulation (Fig 4.13B).  
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Fig 4.13 Responses to full-field (dashed black) and masked (solid red) black and white alternating flashing 

stimuli as a function of the contrast upon administration of 30 μM of bicuculline, for ON and OFF always 

exposed RGCs (aeRGCs). (A) The administration of bicuculline further increases the gap between the peak 

amplitude between the masked stimulation condition and full-field in both populations.(B) Compared to 

full-field stimulation, the blockage of GABAergic transmission significantly reduced the delayed response 

of both ON and OFF aeRGCs in masked stimulation condition respect to full-field. (N=2 retinas, 3 masks 

per retina, 464 OFF aeRGCs and 636 ON aeRGCs). Paired t-test *p<0.05,**p<0.01,***p<0.001. 

 

These results, and in particular those on the lag, indicate that GABAergic transmission is more 

likely involved in shaping the different aeRGCs responses between the two stimulation conditions. 

However, the administration of bicuculline determined an even more pronounced difference in 

the peak of response than the one observed in basal condition. To gain a better understanding of 

the modulation of the peak response induced by the masked stimulation condition we compared 

the response peak in full-field condition without bicuculline and the peak of response in masked 

stimulation condition in the presence of the bicuculline, see Fig 4.14. Interestingly, we found that 

the peak curves of both ON and OFF aeRGCs were nearly indistinguishable between the two 

stimulation condition, except for a slightly higher variability in the mask and bicuculline condition. 

This analysis might suggest that population responses to a full-field stimulus are equivalent to a 

masked stimulus when the GABAergic transmission is disrupted. However, to support this claim,  

further experiments are needed as it will be discussed later.  
 

 
 

Fig 4.14: Similar peak of response between full-field and masked stimuli condition without GABAergic 

transmission. The amplitude of the peak response in masked stimulation condition with the 

administration of bicuculline equals the one observed in full-field stimulation in untreated condition for 

both ON and OFF aeRGCs. (N=2 retinas, 3 masks per retina, 464 OFF aeRGCs and 636 ON aeRGCs). Paired 

t-test *p<0.05,**p<0.01,***p<0.001. 
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Effects on the asymmetric response of ON and OFF exposed RGCs to moving bars 

The response of ON and OFF aeRGCs to black and white bars moving in a single direction and 

at the temporal frequency of 1Hz was characterized in the two stimulation conditions (full-field 

and masked). Six different spatial frequencies were used to evaluate the preferred size of the 

stimulus24 for any given aeRGC. The tuning curves for the different stimuli were quantified by 

considering the coefficient of the Fast Fourier Transform (FFT) of the spike trains related to the 

1Hz component (N=4 retina, 3 masks per retina, 1047 OFF and 1769 ON aeRGCs).  

Results obtained in the full-field stimulation condition show that ON and OFF aeRGCs 

populations have a poor tuning to a particular bar width for medium-high contrasts, as indicated 

by the steadily decreasing tuning curves shown in Fig 4.15. For low contrasts stimuli (CT25), the 

response curve for both ON and OFF population reached a plateau for 0.01 cycle/deg spatial 

frequency bars, instead of steadily increasing until 0.02 cycle/deg. Although the amplitude of 

response is significantly lower than the one to higher contrasts; this might indicate a slight tuning 

to medium-sized bars at low contrast. This intuition will be discussed later through the 

quantification of the suppressive index (see Discussion). Notably, ON and OFF aeRGCs exhibited a 

different sensitivity to contrast variation. Indeed, the ON population had a much higher range of 

amplitudes of response that was roughly proportional to the contrast of the stimulus. Conversely, 

the OFF population suddenly saturated its response as quantified by the Fast Fourier Transform 

component at 1Hz, switching from ≃0.02 directly to the maximum observed value ≃0.09.  

 

 
 

Fig 4.15: Population response to moving bar stimuli of different spatial grating presented in full-field for 

different contrasts quantified by the Fast Fourier Transform. While the OFF population rapidly saturates 

the response as a function of the contrast, ON cells have a more abundant dynamical range. This 

indicates a more accurate sensibility to contrast of ON cells than OFF cells. The CT25 curve resulted 

significantly different from all the others for both ON and OFF populations. The curve CT50 resulted 

significantly different from the others only for the ON population. The statistical significance is assessed 

at the level p=0.05. (N=4 retina, 3 masks per retina, 1047 OFF and 1769 ON aeRGCs) 

 



115 
 

Similarly to other studies25, such asymmetry suggests that the ON and OFF pathways 

contribute differently to the transduction of visual stimuli across contrasts. In particular, this 

result indicates that both ON and OFF cells encode and sense visual features for low contrast 

stimuli whereas the ON circuitry sense contrast variations in a much finer fashion at medium-high 

contrast levels.  

Results obtained by masking the same stimuli (Fig 4.16) showed the masked stimulation 

condition reduced the magnitude of response in both populations (N=4 retina, 12 masks, 1021 

OFF and 1185 ON aeRGCs). Specifically, responses to low spatial frequencies were particularly 

affected by the masked stimulation condition. Moreover, the masking effect affects to a more 

considerable extent the responses of ON rather than OFF aeRGCs, see Fig 4.16. This observation 

combined with the asymmetric perception of contrast mentioned earlier suggests that at high 

contrasts, OFF aeRGCs encode properties of the stimulus such as the bar width, whereas ON 

aeRGCs might be more involved in the encoding of contrast variations of the stimulus.  

 

 
 

Fig 4.16: Population response of ON and OFF cells to moving bars of the different spatial grating in full-

field and masked stimulation condition. For all contrast tested, both populations exhibit a reduced tuning 

to the low spatial frequency of the bars in masked condition (colored lines) respect to full-field (black 

lines). (N=4 retina, 3 masks per retina, 1021 OFF and 1185 ON aeRGCs). Paired t-test 

*p<0.05,**p<0.01,***p<0.001. 

 

Effects on model-fitted estimated receptive field parameters of confined visual stimulation 

The previous section has revealed differences in terms of the peak and lag of the populations’ 

responses to masked and full-field stimulation conditions using moving bars and alternating white 

and black flashes stimuli. Here, we investigate differences in these stimulation conditions using the 

previously introduced model of receptive fields. To do so, we fitted the parameters of the 

Gaussian model of the receptive fields with the acquired data for all aeRGCs, regardless of their 

polarity (N=4 retina, 3 masks per retina, 2176 aeRGCs), and we compared results on data acquired 

under full-field and masked stimulation conditions. As illustrated in Fig 4.17A, we evaluated the 

following fitted parameters of the model: Kc, the amplitude of the center; Ks, the amplitude of the 

surround; Dc, the diameter of the center and Ds; the diameter of the surround. 
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In full-field stimulation conditions, our estimation of the receptive fields using moving bars 

indicated that the absolute strengths of both the center (Kc) and the surround (Ks) part of the 

receptive field are stable across contrasts, see Fig 4.17B. This is different from our previous result 

(flash and moving bars protocols) in which we showed an explicit dependence on the contrast in 

the response of aeRGCs to moving bars. Interestingly, this difference can be explained by looking 

at the strength difference between the center and the surround.  

 

 
 

Fig 4.17: Estimation of receptive field model parameters in full-field (black) and masked (blue) stimulation 

conditions. (A) Qualitative representation of the “Difference of Gaussian” model of the receptive field. Kc 

and Ks represent the amplitudes of the concentric excitatory (center) and inhibitory (surround) 

Gaussians, respectively. Dc and Ds represent the size of the receptive field center and surround, 

respectively. (B) Amplitude of both the center (Kc) and the surround (Ks) are reduced in masked stimuli 

condition with respect to the full-field stimulation condition. Similarly to what was observed in the 

stimulation with white and black alternating flashes in full-field and masked conditions ( 

Fig 4.12), the difference between the center and surround amplitude (Kc-Ks), i.e., the expected response 

to an infinite stimulus covering both the center and the surround, was significantly reduced in masked 

condition respect to full-field, Paired t-test *p<0.05,**p<0.01,***p<0.001. (C) The size of both the center 

and the surround sizes are reduced in masked condition, thus suggesting a higher tuning to smaller 

spatial gratings or a loss of tuning for large spatial gratings. Similarly to the relative amplitude between 

the center and surround of the receptive field, the difference between the size of the surround and the 

center of the receptive field (Ds-Dc) was reduced in masked stimuli condition respect to full-field stimuli.  

 

Specifically, this difference rapidly increased after CT25 (from 0.022±0.09 to 0.051±0.013, a.u. in 

full-field stimuli conditions), thus indicating a higher contribution of the excitatory center respect 

to the surround. In other words, while at low contrast the difference of the strength was almost 

negligible, as the contrast increased the tuning of the RGCs sharpened. Additionally, the difference 

in strength curve stabilized for CT75 and CT100 (0.050±0.012 and 0.048±0.011,  a.u. respectively), 
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thus ensuring the convergence of our estimation method. On the other hand, the diameter of the 

center and the surround exhibited different trends in full-field stimulation, see  

Fig 4.17C. Specifically, while the diameter did not exhibit a well-defined trend as a function of the 

contrast, the diameter of the surround steadily decreased at CT75 and CT100 by ≃6% and ≃18% 

compared to CT50, possibly indicating that at the higher contrast possible the contribution of 

inhibition sharpened the tuning of RGCs. Indeed, the smaller difference between the center and 

the surround diameter was observed for stimuli at maximum contrast.  

Interestingly enough, the masked stimuli condition revealed changes in the receptive field 

parameters similar to the ones previously observed with alternating white and black flashes 

stimuli. First of all, we found that the strength of both the center and the surround of the 

receptive field were reduced by more than 15% for any of the tested contrasts. Additionally, the 

difference between the strength of the center and the surround resulted significantly lower (an 

average reduction of 187±52μm among all the contrasts tested) in masked stimulation condition 

compared to the full-field stimulation. This suggests that for all contrast the response of an aeRGC 

was indeed reduced in masked stimuli condition respect to full-field stimulation as we directly 

measured. The same dependence on the contrast was observed between full-field and masked 

stimuli except for a constant offset term. Unexpectedly, we found that the estimation of the 

diameter of the receptive field center and surround were greatly reduced in masked condition, 

with an average two-fold decrease of their amplitude. Indeed, we were expecting to observe less 

tuned cells, similarly as what we found for a decreased responsiveness to the moving bars. The 

two-fold reduction of the surround and the center diameter suggests that, in masked stimulation 

conditions, the retinal ganglion cells experienced an increased amount of inhibition compared to 

full-field stimulation. This result is inherited from what we have observed with the moving bars of 

the different spatial grating and where the responses to large bars were significantly reduced.  

Discussion 
 

In this section, I discuss our results and experimental conditions with respect to four important 

points that might have influenced our results and their interpretation. These points are effects 

that might have been induced by changes in the luminance levels, by a drop-down of the retina 

responsiveness due to lows of tissue viability during the long duration of our experiments, an 

adaptation of the retina responses to the stimuli, or to the mesoscopic light stimulation regime 

used in our experiments. Finally, I provide a possible interpretation of our data and I discuss future 

experiments that should be performed in order to disentangle the mechanisms at the origin of the 

observed responses in full-field and masked stimulation conditions. 

The first important point to take into account relates to the average luminance level of the 

presented stimuli. Several experimental works already highlighted the importance of the 

luminance of the stimulus in modulating the response of RGCs26. Specifically, changes in the 

ambient luminance determine significant qualitative and quantitative changes in the RGCs 

responses, including the appearance and disappearance of ON responses in OFF cells and vice-

versa26,27. Thus, a different luminance between the masked and full-field stimulation conditions 

could explain some of the phenomena we observed with respect to the classical properties of 
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receptive fields28,29. Indeed, it is widely accepted30,31 that full-field stimulation consistently 

decreases the peak response of ON and OFF RGCs with respect to large and optimal size spots 

aligned within the center of the receptive field32,33. In our flash protocol, the overall luminance of 

the stimuli presented to the retina is not spatially uniform over the tissue because of the 

alternation of dim and bright full-field phases in the exposed area (i.e., not masked). On the other 

hand, the presence of the mask can modulate the overall luminance as the dim and dark phases of 

the stimuli in the full field condition are replaced by an iso-luminant gray in the in the area 

underneath the mask. Hence, aeRGCs might reduce their peak response to masked stimuli as a 

consequence of the weaker luminance than experienced in the full-field condition. However, while 

this argument can explain the reduction in the peak amplitude found for ON and OFF aeRGCs in 

the masked condition compared to full-field, it is, in my opinion, a weak justification for the 

reduced FFT amplitude that we observed for masked stimuli. Indeed, in full field stimulation 

condition, the presence of bright and dark bar gratings ensures that the average spatial level of 

luminance equals the one applied to the masked area. Furthermore, we also verified whether our 

recordings are artifact-free for changes in luminance. To do so, we measured using an optical 

power meter (PM130, Thorlabs20) the average luminance in the un-masked region for both full-

field and masked stimuli conditions. These tests performed using only the light projector have 

shown that the luminance in the un-masked region was replicating the same time course during 

both full-field and masked stimuli condition. Therefore, the observed differences in RGCs 

responses for the two stimulation conditions are in my opinion unlikely to occur due to luminance 

differences between the two conditions. 

The second important point to raise relates to the viability of the ex-vivo retinas during our 

experiments. Indeed, degeneration over time of the explanted brain tissue and the limited amount 

of resources in the photoreceptors may substantially bias our results. The mentioned degenerative 

phenomena, indeed, might explain our results, especially given the order of the visual stimulation 

sequence (first full-field and secondly masked stimuli condition). However, in previous 

experimental investigations performed to validate the experimental platform and conditions, it 

has been observed that the retinal tissue was reliably and robustly responding for visual 

stimulations lasting more than two hours and a half, with non-significant attenuations of the peak 

firing rate in response to alternating dim and bright flashes. To ensure that tissue degeneration is 

not significantly biasing our results, in all our experiments we performed a full-field flash protocol 

at the end of masked stimuli condition phase.  
 

 

Table 4.1 Difference in peak firing rate in response to alternating flashes of four different contrasts 

between the beginning and the end of a typical experiment. The pool of cells consists of  617 and 635 OFF 

and ON retinal ganglion cells recorded during six experiments. The quantification revealed a slight 

increase of the peak firing rate at the end of the experiment, possibly due to an increased coupling of the 

tissue with the MEA, which might increase along the duration of the experiment. 

 CT 25 CT 50 CT 75 CT 100 

OFF RGCs 6.94±24.61 Hz 5.9±21.40 Hz  5.32±24.30 Hz 5.71±23.61 Hz 

ON RGCs 3.32±18.93 Hz 3.06±20.59 Hz 3.07±19.29 Hz 3.22±20.11 Hz 
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As shown in Fig 4.18 the peak firing rate of both ON and OFF aeRGCs is not significantly decreasing 

(see Table 4.1) during experiments, but exhibit a slight increase possibly due to a slightly 

improving coupling of the tissue to the CMOS-MEA along with the duration of our experiments 

(note that before starting an experiment we always wait at least 30 minutes in order to ensure a 

good and stable coupling). 

 

 

 
 

Fig 4.18: Peak firing rate difference of OFF and ON aeRGCs between a full-field stimulus presented at the 

beginning and at the very end of a typical experiment and used to assess the stability of retina responses 

during our long (ca. 100 minutes) stimulation protocols. The peak response of both OFF and ON aeRGC 

population probed in four distinct areas of the retina does not significantly decrease during the 

experiment supporting a marginal contribution of the tissue degeneration in explaining the results 

obtained. Data were collected from 617 and 635 OFF and ON retinal ganglion cells in response to Flash 

CTALL protocols at the beginning and at the end of 6 experiments. A paired t-test reported nonsignificant 

decrease for all the contrast tested at p=0.05 level. 

The third potential caveat in our interpretation concerns the potential adaptation of the retina 

to the stimuli. An adaptation can contribute in modulating the spiking response of retinal ganglion 

cells during the time course of our experiments. Specifically, the retinal network was shown to be 

able to adapt its processing from low-contrast stimuli to high-contrast stimuli and vice-versa to 

efficiently resolve details of the visual scene34,35. The retinal ganglion cells response, indeed, is not 
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solely modulated by the average level of ambient luminance, but also by second order statistics of 

the light intensity, such as the image contrast. In our experiments aimed at evaluating the 

response of retinal ganglion cells in full-field and masked stimuli conditions with different ranges 

of contrast, we took into account this potential risk during the design of the stimulation protocols. 

In particular,  we included intervals with iso-luminant gray uniform images and lasting at least 30s 

before any change in the stimulus contrast (as the one occurring during the Flash CTALL protocol 

in between CT25, CT50, CT75 and CT100). This is aimed at restoring the circuit to the baseline and 

minimize effects of adaptation. Furthermore, at the end of each stimulation condition (i.e., full-

field or masked), the retina experienced some minutes of iso-luminant gray, which is the time 

required for setting up the subsequent protocol of visual stimulation. It also has to be noted that 

in this study we focused on the mean response of retinal ganglion cells. Consequently, we 

averaged out the parameters in the 20s time interval of the periodic repetition of the visual 

stimuli. By doing so, however, the effect of retinal adaptation are masked. Indeed, we experienced 

adaptation of retinal ganglion cells peak response at the onset of a new sequence of flashes, for 

both full-field and masked stimuli condition, which affected the first dim and light flash (i.e., 

approximately 1s). Consequently, in next experiments we are planning to investigate whether the 

masking of the stimulus (and the size of the masking area) can be potentially associated with a 

different adaptation time constant of the retinal processing.  

The fourth point that has to be considered to interpret our results relates to the mesopic 

regime of light stimulation used in our experiments. The mesopic luminance used in our 

experiments (i.e., 0.11 cd/m2) seats in the middle between the two extreme scotopic and photopic 

regimes. Hence, we expect that the response of RGCs should mix the information collected 

through rods (used for scotopic vision) and the cones (used for photopic vision) pathways. In a 

study similar to ours27 (in terms of experimental paradigm and animal model, although measured 

in-vivo), a set of square-wave alternating dim/bright spots of increasing size (up to full field 

condition) were presented to the animal, while leaving in constant luminance condition (the 

average luminance between the dim and bright phase of the stimulus) the portion of the visual 

scene outside of the spot. In this study, the peak response of RGCs to alternating dim and bright 

stimuli resulted to be a function of the illuminated area exhibiting the typical center-surround 

organization. The disagreement between the mentioned work and our results can be disentangled 

by observing that all our stimuli were presented in mesopic ambient luminance, while the 

mentioned study was carried out in the photopic regime. Hence, it is possible that the 

combination of rod and cone signaling pathways characterizing the mesopic regime might both 

contribute to RGCs responses and might explain our results. Additionally, studies performed in 

scotopic ambient luminance, or low ambient light levels in mice36,37 and other animal models26,38, 

found that the antagonistic effect induced by the receptive field surround was either absent or 

significantly reduced. Indeed, it has to be reminded that in this regime the activation of the 

surround of ganglion cells requires a higher level of maintained background illumination with 

respect to the surround antagonism39,40. Furthermore, in the scotopic range of luminance, center 

responses in cat retinal ganglion cells have also been observed by presenting a small spot of light 

displaced 450µm away from the center of their receptive field, but the same stimulation was 

shown to turn into antagonistic surround response at photopic levels38. Therefore, while in 
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photopic regime the retinal ganglion cells spiking activity exhibits a clear center-surround 

organization, in the scotopic regime, the inhibitory contribution that shapes their receptive field is 

significantly reduced.  

Overall, these observations on the mesopic stimulation regime lead us to hypothesize a 

possible explanation of our results that strictly relates to the interplay in this regime between the 

center and the surround of the RGCs receptive fields. Theoretically, our results can be easily 

derived from the absence of an inhibitory surround or with a substantially reduced contribution of 

inhibition in shaping the center response. Specifically, in the limiting scenario of RGCs without an 

antagonistic surround, the higher is the extension of the stimulus, the higher the response will be. 

The latter consideration can indeed explain the reduced peak of response to masked stimuli with 

respect to full-field. For moving bars stimuli the same argument can explain why the difference in 

the coefficient of the FFT is statistically significant only for low spatial frequencies. Indeed, while at 

the medium-high spatial frequencies the alternating dim and bright gratings approximate the 

projected iso-luminant gray and determine a minor difference between full-field and masked 

stimuli condition, at low-spatial frequencies the mask significantly reduces the overlap between a 

stimulus and a large receptive field excitatory center, thus determining a weaker response. In this 

scenario, the decrease of both the receptive field center and surround for masked stimuli is the 

result of the reduced extension of the stimulus and of the portion that is impinging the center.  

However, the later interpretation raises a series of additional questions. First, is it possible to 

observe retinal ganglion cells that do not exhibit a clear center-surround organization? Second, if 

these cells exist, how many of them are present in our recordings? These questions are interesting 

and can be addressed with our data due to the recording capabilities of high-density CMOS-MEAs. 

A lack of suppressive signaling to the center of the receptive field can be estimated by the tuning 

of RGCs to the spatial frequency of the moving bars. This information was hidden in our previous 

analysis as all the four parameters reported in Fig 4.17 collectively contributed to the RGCs tuning. 

To quantify the tuning of RGCs with a single parameter, we quantified the suppressive index41, 

which is defined as : 

100 ∙ (1 −
𝑅∞
𝑅𝑚𝑎𝑥

) 
 

where 𝑅∞ is the response to the largest bars presented and 𝑅𝑚𝑎𝑥 is the maximum response across 

all the presented spatial frequencies (in this quantification the response is intended as the Fourier 

coefficient at the temporal frequency of the applied stimuli, i.e., 1Hz). A null suppressive index 

would mean that the RGCs are poorly tuned, i.e., their maximum response equals the response to 

the largest presented bar (i.e., 1344 µm in our case). Instead, a value approaching 100 would 

indicate that RGCs have a small (or no response at all) to the lowest spatial frequencies. At the 

same time it reveals that the cell is tuned to a single or a range of higher spatial frequencies. The 

latter scenario would indicate a significant contribution of the surround in shaping the center 

response. Thus, if our hypothesis on the reduction of the inhibitory contribution induced by the 

masked condition would be correct, we should expect a considerable number of RGCs with a 

suppressive index approaching the value of zero. 
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Fig 4.19: Quantification of the Suppressive Index (SI) of aeRGCs. The suppressive index, i.e., the tuning to 

high spatial frequency gratings was quantified for contrasts of CT25, CT50 and CT100 using full-field 

stimuli. The suppressive index reveals a poor tuning of aeRGCs (N=2176 cells) that slightly improves for 

low contrast stimuli (CT25). 
 

By running this analysis, we found that a large fraction of aeRGCs was extremely poorly tuned. 

Specifically, more than 25% of RGCs had a suppressive index of 0 while only 10 % had a 

suppressive index >50. As shown in Fig 4.19, the tuning of aeRGCs also depended on the contrast 

and showed a slightly better tuning of the entire population at low contrast levels. Therefore, 

these results support the hypothesis of a reduced contribution of the inhibitory surround in 

shaping the response of RGCs at mesopic luminance levels and it can potentially explain why our 

result differs from the ones reported for photopic stimulation conditions27.  

Importantly, the lack of tuning observed in our condition is compatible with an intermediate 

behavior between scotopic and photopic vision7. Specifically, stimulation with full-field sine-wave 

modulated gratings at different spatial frequency determines a strong shift from low spatial 

frequency to mid-spatial frequencies in the tuning of mouse RGCs for conditions from scotopic to 

photopic regimes36. In scotopic regimes the tuning curves in response to different spatial gratings 

were found to be constantly increasing with the decrease of the spatial frequency, thus 

corresponding to a null tuning. However, in photopic conditions, the tuning curves of the same 

RGCs reached a maximum at 0.017 cycle/deg (corresponding to 1632µm bar width) and a reduced 

response to lower spatial frequencies36. Similarly, the shift from low to high spatial frequency 

responses observed when shifting from low to high luminance ambient levels has also been 

observed in behavioral tests in mice42. These results are also consistent with the evidence that, in 

the photopic regime mouse RGCs markedly exhibit the features of center-surround organization. 

In this case, stimulation in the periphery of the receptive field center with the preferred stimulus 

determines a weaker response of the cells16.  

Consequently, we estimate that under mesopic luminance condition both rods and cones 

pathways are conveying information to RGCs. This consideration is particularly appealing in our 

case since, differently than bipolar cone cells, bipolar rod cells lack a center-surround 

organization37 and their activity is mediated by wide-field amacrine cells that in turn can provide 

an inhibitory feedback inhibition onto the terminals of bipolar cells43. This inhibitory feedback was 

shown to be GABA mediated44. The peculiar connectivity and the morphology of this type of 
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amacrine cells that can span for millimeter distances43 represent therefore a good candidate for 

further studies on this horizontal signal transmission in the retina. In our study, we have 

attempted to disentangle a potential neuronal circuitry through preliminary experiments using 

pharmacological manipulation (administration of bicuculline). However, the administration of 

bicuculline blocked several other inhibitory pathways because the GABAergic transmission is 

ubiquitary in the retina (see for instance horizontal cells and amacrine cells)45. Although this 

important issue in our bicuculline experiments, our results revealed interesting phenomena. While 

bicuculline recovered the difference in the lag of response between masked and full-field stimuli 

condition, it further increased the gap in the peak response of aeRGCs. At the current stage, we do 

not have an explanation for this unexpected result. Specifically, while the reduction in the lag of 

response was somehow expected by the release of the inhibitory contribution on the retinal 

temporal processing, the significant decrease of the peak of response in the masked regions is not 

straightforward to understand. Finally, it has to be highlighted that several other potential targets 

should be considered in addition to a potential contribution of wide-field amacrine cells. These 

targets include the population of displaced amacrine cells46, the activation of melanopsin ganglion 

cells (that contact starburst), AII amacrine cells that ultimately regulate the crossover between 

rods and cones pathways47 and the dopaminergic circuit48,49 which modulate the rod pathway. 

Conversely, we tend to exclude a possible cross-talk at the horizontal cell level because the gap 

junctions established among these cells have a minor influence in shifting the sensitivity to high 

spatial gratings when moving from scotopic to photopic regimes36. 

Altogether, the results of our study raise additional questions that need to be experimentally 

addressed in future work. In particular, we are planning to further classify RGCs according to their 

tuning to provide a clearer picture of our results. To this aim, we plan to check the goodness of fit 

between a single excitatory Gaussian and the combination of an excitatory and inhibitory one. 

Given that the polarity of RGCs can change as a function of the ambient luminance26, the overlap 

between the center-surround organization and the stimulus16, we want to explore whether 

aeRGCs in our recordings do change their polarity towards ON-OFF responses. At the same time, 

we aim at performing a set of experiments to target the amacrine population. While methods to 

selectively perturb the amacrine population needs to be established, in the short term we will 

investigate the masked and full-field responses upon administration of a cocktail of bicuculline and 

strychnine, in order to remove the inhibition mediated by GABAA and the glycine50. The expected 

outcome of this experiment is that aeRGCs responses under full field and masked conditions 

should be nearly indistinguishable after the pharmaceutical treatment.  

 

Functional implications of our results for vision  

Our result suggests that differently than in photopic vision, in the mesopic regime and at the 

luminance level that we tested, the strategy for the visual information encoding used by the retina 

might be substantially different and it resemble more a scotopic than a photopic type of vision. 

Specifically, a full-field change in luminance seems to convey much more information (in terms of 

number of spikes and latency to the peak response) than a confined stimulus. Importantly, since 

mice are nocturne animals they most likely exploit the vision in mesopic conditions, and 
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consequently, the coding strategy of their retina should be adapted to maximize the efficiency and 

effectiveness of the visual stream. The poor tuning of retinal ganglion cells that we observed, 

however, suggests that in mesopic conditions low spatial frequency largely dominates over details. 

Thus, differently than in photopic vision, a larger area of the visual scene modulates the center 

response of RGCs as a consequence of a reduced lateral inhibition. Nevertheless, our data showed 

a good confinement of the activity induced by the mask application.  

The latter observation has important implications for mesopic vision. How can mice 

discriminate edges with such a poor spatial resolution and in dim conditions? We suggest that 

border detection might be performed by downstream circuits that compare in a differential 

manner the output of large population of RGCs. On the other hand, in the full-field condition, the 

whole visual scene is rapidly changing unexpectedly. Hence, the increased peak firing rate and the 

diminished temporal lag might represent a signal of alert for downstream circuits. Conversely, in 

the photopic range, the increased spatial acuity gained by the contribution of the surround 

inhibition, might provide a higher resolution content of the visual scene than in mesopic condition. 

Consequently, RGCs are already conveying an accurate piece of information and consequently 

broad modulations of the retinal output related to low spatial frequencies can be filtered out.   
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Chapter V - Dissemination and attended 

schools 
 

 

This section reports the dissemination results of my work achieved during the three years of 

my Ph.D. This includes publications in peer-reviewed journals, oral and poster presentations at 

international conferences or seminars. Finally, I also report here the schools I have attended 

during my Ph.D. 

Peer-reviewed contributions 
 

Valente, P., Romei, A., Fadda, M., Sterlini, B., Lonardoni, D., Fruscione, F., Castroflorio, E., 

Michetti, C., Valtorta, F., Tsai, J., Zara, F., Nieus, T., Corradi, A., Fassio, A., Baldelli, P. & 

Benfenati F., Constitutive inactivation of the PRRT2 gene alters short-term synaptic 

plasticity and promotes network hyperexcitability in hippocampal neurons. Cerebral Cortex, 

under revision. 
 

Aletti, G., Lonardoni, L., Naldi, G. & Nieus T., From dynamics to links: a sparse 

reconstruction of the topology of a neural network. Communications in Applied and 

Industrial Mathematics, (2017), in press. 
 

Lonardoni, D., Amin, H., Di Marco, S., Maccione, A., Berdondini, L., & Nieus, T. Recurrently 

connected and localized neuronal communities initiate coordinated spontaneous activity in 

neuronal networks. PLOS Computational Biology 13, e1005672 (2017). 
 

Amin, H., Nieus, T., Lonardoni, D., Maccione, A., & Berdondini, L. High-resolution 

bioelectrical imaging of Aβ-induced network dysfunction on CMOS-MEAs for neurotoxicity 

and rescue studies. Sci. Rep. 7, 2460 (2017). 
 

Lonardoni, D., Di Marco, S., Amin, H., Maccione, A., Berdondini, L. & Nieus, T., High-density 

MEA recordings unveil the dynamics of bursting events in Cell Cultures. Engineering in 

Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the 

IEEE. (2015). 
 

Bosi, S., Rauti, R., Laishram, J., Turco, A., Lonardoni, D., Nieus, T., Prato, M., Scaini, D. & 

Ballerini, L., From 2D to 3D: Novel nanostructured scaffolds to investigate signaling in 

reconstructed neuronal networks. Sci. Rep. 5, 9562 (2015). 

Manuscript in preparation 

Lonardoni, D., et al. Combining high dense MEA retina recording with precise 

spatiotemporal visual stimulation to investigate long-range horizontal interactions. 
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Oral presentations 
 

Talk entitled: “High-density MEA recordings unveil the dynamics of bursting events in Cell 

Cultures.” at 37th Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBC) on 27/08/2015. 
 

Talk entitled: “Determinants of spontaneous synchronized network activity in primary 

neuronal cultures: a computational approach” in “Reading Group Seminar-Workshop” 

organized by Mathematics Department of University of Milan on 23/05/2016. 

Poster presentations 

 

Computational Neuroscience Conference 2015, Prague 

“A computational model of cell culture dynamics: the role of connectivity and 

synaptic receptors in the appearance of synchronized bursting events”, authors: 

Lonardoni D., Amin H., Di Marco S., Maccione A., Berdondini L., Nieus, T. 

Date: 20/07/2015; Poster Board Number: P177 

Bernstein conference 2015, Heidelberg 

“A computational model of neuronal network dynamics: the role of synaptic 

receptors in modulating synchronized bursting events”, authors: Lonardoni D., Amin 

H., Di Marco S., Maccione A., Berdondini L., Nieus, T. 

Date: 16/09/2015; Poster Board Number: W47 

Society for Neuroscience Conference 2016, San Diego  

“Determinants of spontaneous synchronized network activity in primary neuronal 

cultures: A computational approach”. Authors: Lonardoni D., Amin H., Di Marco S., 

Maccione A., Nieus, T., Berdondini L. 

Date: 15/11/2016; Poster Board Number: NNN31 

26th Annual Computational Neuroscience Meeting 2017, Antwerp 

“Insurgence of network bursting events in formed neural culture networks: a 

computational approach“. Authors: Lonardoni D., Amin H., Di Marco S., Maccione 

A., Nieus, T., Berdondini L. 

Date: 16/07/2017; Poster Board Number: 14 

“Investigating the effects of horizontal interactions on RGCs responses in the mice 

retina with high-resolution pan-retinal recordings”. Authors: Lonardoni D., Boi F.., Di 

Marco S., Maccione A., Berdondini L. 

Date: 17/07/2017; Poster Board Number: 187 
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Schools attended 

GPWS 2015  

Gaussian Process Winter School 2015, Genova, Italy: January, 19-22, 2015  

Instructor: Prof. Dr. Neil Lawrence and Prof. Dr. Lorenzo Rosasco  

Information Processing in Neural Systems: From Single Neurons to Large-Scale Models of 

Cognition 

Osnabrück, Germany: May 2-10, 2015  

Instructors:  

Prof. Dr. Nicolas Brunel, Prof. Dr. Gustavo Deco, Dr. Marc-Oliver Gewaltig, Prof. Dr. Frank 

Jäkel, Prof. Dr. Herbert Jäger, Prof. Dr. Peter König and Prof. Dr. Gordon Pipa 
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Annex I - Neuronal cultures protocol, model 

implementation and analysis 
 

 

 

 

Ethics Statement 

All procedures involving experimental animals were approved by the institutional IIT Ethic 

Committee and by the Italian Ministry of Health and Animal Care (Authorization number 

110/2014-PR, December 19, 2014). 

Large-scale recording of neuronal spiking activity in cultured networks 

Cell cultures and high-resolution CMOS-MEA recordings 

Primary hippocampal neurons from rat embryos (at embryonic day 18, E18) were dissociated 

following procedures as described in 1,2 and plated on CMOS multi-electrode arrays (CMOS-MEAs, 

Biochip 4096E, from 3Brain GmbH). Chips were previously sterilized with 70% ethanol, conditioned 

overnight in an incubator with cell culture media and coated with adhesion-promoting molecules, 

i.e., a double layer of 0.1 mg/ml poly-L-lysine (Sigma P-6407) and 0.1 mg/ml laminin (Sigma L-

2020). A few hours after plating at a nominal cellular density of approximately 3000 cell/mm2, the 

cell culture reservoir of each device was filled with 1.5 mL of Neurobasal cell culture media 

(Thermo Fisher, #21103049) supplemented with B-27 (Thermo Fisher, #17504044) and placed in a 

humidified incubator (5% CO2) at 37 °C. Cell cultures were grown on a chip for 19-21 days in vitro, 

an age where sustained spontaneous electrical activity characterized by single spikes and short 

bursts propagating through the network is observed. 

The extracellular activity of the cultures was recorded from 4096 electrodes for 10 minutes 

using a custom recording system similar to the BioCam platform commercially distributed by 

3Brain AG, Switzerland. The electrode array provides 4096 square electrodes (21 x 21 µm2, 82 µm 

electrode pitch) covering an active area of approximately 5 x 5 mm2. Pharmacologically 

manipulated activity with bicuculline (BIC) at 30 µM or (2R)-amino-5-phosphonovaleric acid (APV) 

at 50 µM was also recorded for some cultures after adding the compound to the cell culture 

media. All the raw data were stored as .brw files (BrainWave, 3Brain AG, Switzerland) and then 

exported to Python (Python Software Foundation, Python Language Reference, version 2.7) for 

further analysis (c.f. “Data analysis of experimental and simulated data”).  

Computational network model 

The computational network model is composed of a set of excitatory and inhibitory spiking 

neuronal models implemented in NEURON 3. We used the Adaptive Exponential Integrate and Fire 

(AdExp) neuron model described in 4, which, similar to the Izhikevich model 5, represents a good 

compromise between computational costs and the capability of mimicking the variety of firing 
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patterns exhibited by real neurons. The differential equations governing the AdExp dynamics are as 

follows: 

{
𝐶
𝑑𝑉

𝑑𝑡
= −𝑔𝐿(𝑉 − 𝐸𝐿) + 𝑔𝐿∆𝑇𝑒

(
𝑉−𝑉𝑇
∆𝑇

) − 𝑤 +∑𝐼𝑠𝑦𝑛 + 𝐼𝑏𝑔

𝜏𝑤 
𝑑𝑉

𝑑𝑡
= 𝑎(𝑉 − 𝐸𝐿) − 𝑤

 

 

The variable 𝑉 represents the membrane potential, and 𝑤 is an internal state variable 

responsible for any adaptive phenomena. The voltage 𝑉 is governed by a leak current 

(conductance 𝑔𝐿, reversal potential 𝐸𝐿), a 𝑁𝑎+ -like current involved in the upswing of the action 

potential given by the exponential term, an adaptive current 𝑤, the synaptic currents 𝐼𝑠𝑦𝑛 and a 

background noise 𝐼𝑏𝑔 current. The adaptive current 𝑤 is modulated by the voltage and relaxes 

back to its equilibrium with the adaptation time constant 𝜏𝑤. Regarding the spiking mechanisms, 

whenever the voltage crosses the threshold of 0 mV, a spike is emitted, and the state variables are 

reset (𝑉 → 𝑉𝑟𝑒𝑠𝑒𝑡, 𝑤 → 𝑤 + 𝑏). In our model, the parameter settings of the AdExp were adapted 

from 6. Because neurons do not fire isolated bursts at the mature stage of cell culture 7, we 

assumed standard spiking models for the excitatory and inhibitory neurons 8 with the same 4:1 

ratio. Excitatory neurons were modelled as characteristic adaptive firing neurons, and inhibitory 

neurons mimicked the firing of fast-spiking interneurons. Then, to consider the heterogeneity of 

cells in neural cultures and to ensure that network synchronization was not a consequence of 

identical properties of single cells 9,10, the parameters of the modelled neurons were drawn from a 

normal distribution (see Table 2 for values). 
 

Synaptic communication 
 

Previous studies highlighted that the coordinated activities in cell cultures are determined by 

the chemical synapses and not by gap junctions or extracellular substances 11. Therefore, we 

modeled the dynamics of excitatory AMPA and NMDA and inhibitory GABA chemical synapses. 

Synaptic transmission was delayed by a fixed time (0.5 𝑚𝑠) to account for synapse activation and a 

variable delay (maximum 1.5 𝑚𝑠) to account for the propagation of the pre-synaptic spike. Each 

type of synapse contributed with a current 𝐼𝑠𝑦𝑛 modelled as follows: 
 

{

𝐼𝑠𝑦𝑛 = 𝑔𝑠𝑦𝑛(𝑣 − 𝐸𝑟𝑒𝑣)

𝜏𝑠𝑦𝑛
𝑑𝑔𝑠𝑦𝑛

𝑑𝑡
= −𝑔𝑠𝑦𝑛

 

where 𝑔𝑠𝑦𝑛 is the synaptic conductance and 𝐸𝑟𝑒𝑣 is its reversal potential. The synaptic 

conductance has a bi-exponential profile (parameters in Table 3): 
 

{
 
 

 
 𝜏𝑠𝑦𝑛

𝑑𝑔𝑠𝑦𝑛

𝑑𝑡
= −𝑔𝑠𝑦𝑛

𝜏𝑟𝑖𝑠𝑒
𝑑𝑔𝑟𝑖𝑠𝑒
𝑑𝑡

= −𝑔𝑟𝑖𝑠𝑒

𝐼𝑠𝑦𝑛 = (𝑔𝑠𝑦𝑛 − 𝑔𝑟𝑖𝑠𝑒)(𝑣 − 𝐸𝑟𝑒𝑣)

 

Each time an action potential is delivered to a target neuron (i.e., a time 𝑡𝑠𝑝), the conductance 

parameters 𝑔𝑠𝑦𝑛 and 𝑔𝑟𝑖𝑠𝑒 are increased by 𝑔 × 𝑦, where 𝑔 is the maximum value for the synaptic 
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conductance and 𝑦 is the fraction of the active resources (i.e., released neurotransmitters). The 

synaptic current exhibits short-term depression modelled under the assumption of finite synaptic 

resources 12 as shown: 

{
  
 

  
 
𝑑𝑥

𝑑𝑡
=

𝑧

𝜏𝑟𝑒𝑐
− 𝑢 ⋅ 𝑥 ⋅ 𝛿(𝑡 − 𝑡𝑠𝑝)

𝑑𝑦

𝑑𝑡
= −

𝑦

𝜏1
+ 𝑢 ⋅ 𝑥 ⋅ 𝛿(𝑡 − 𝑡𝑠𝑝)

𝑑𝑧

𝑑𝑡
=
𝑦

𝜏1
−

𝑧

𝜏𝑟𝑒𝑐

 

 

where x, y and z represent the fraction of available, active and recovered resources, respectively. 

The time constant 𝜏1 regulates the transition between the available and active state, and 𝜏𝑟𝑒𝑐 is 

the recovery time constant.  

The NMDA current was modeled similarly to the AMPA and GABA currents, with an additional 

magnesium block mechanism 13: 
 

𝐼𝑁𝑀𝐷𝐴 = 𝑔𝑁𝑀𝐷𝐴 ⋅ (𝑣 − 𝐸𝑟𝑒𝑣) ⋅ 1 (1 + 𝑒𝑥𝑝(−(𝑣 − 𝑣0) 𝑘0⁄ ))⁄  
 

where 𝑘0=6 mV (steepness of voltage dependence) and 𝑣0=−40 mV (half-activation potential). The 

maximum NMDA conductance (𝑔
𝑁𝑀𝐷𝐴

) is written in terms of the AMPA conductance: 𝑔
𝑁𝑀𝐷𝐴

=

𝐾𝑁𝑀𝐷𝐴 ⋅ 𝑔𝐴𝑀𝑃𝐴 such that in basal/standard conditions 𝐾𝑁𝑀𝐷𝐴 = 0.09 (i.e., 𝑔
𝑁𝑀𝐷𝐴

=4.32 𝑛𝑆), and 

while under APV application, an NMDA antagonist, 𝐾𝑁𝑀𝐷𝐴 = 0. All parameter values are reported 

in Table 3. To mimic the effects of the NMDA and GABA synaptic blockers (APV and BIC), the 

conductance of the target receptor was set to zero. Networks with only the AMPA and GABA 

synapses are called AG-networks in the text, and networks with in addition the NMDA current are 

called AGN-networks.  
 

Background activity of the network 
 

From its earliest days in vitro, cultured neuronal networks display random spontaneous spiking 

activity. In the model, this activity was mimicked by injecting sub-threshold synaptic noise (i.e., 

miniature events 11) modeled as independent Poisson processes at a mean frequency of 25 𝐻𝑧. 

The summation of the synaptic noise occasionally brought the neurons to fire in the uncoupled 

network and determined a background spiking activity of 0.010 ± 0.007 𝐻𝑧 (close to the value 

found in experiments when AMPA receptors are blocked with CNQX 14).  

Network topology 

Although network topology has been recognized to play an important role in determining 

network activity, many works have neglected the spatial constraints derived from the location of 

neurons in the network 15,16. To be comparable with our experimental recordings, 4096 neurons 

were uniformly distributed on a unit square, and the connectivity probability among the neurons 

depended on the distance according to a radial Gaussian function. The distance-based connectivity 

rule allowed for the creation of biologically inspired networks whose graph properties (i.e., 

clustering coefficient or the presence of shortcuts) were not imposed but were rather inherited 

from the imposed spatial organization of neurons. Only graphs without any isolated component 
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were used in the simulations. It is important to highlight that the random arrangement of neurons, 

the distance-based connectivity rule and the sparseness of the connections used to establish the 

network topology give rise to an in-homogeneously connected network that includes clusters of 

nodes with denser connections. As a consequence, although the node degree is quite comparable 

between the Gauss and random graph, the clustering coefficient of the former is significantly 

higher than in the latter one.  

The directionality of the synaptic connections among pairs of neurons was assigned with equal 

probability. Although bidirectional connections are quite common in the brain, computer 

simulations have shown that networks with only depressing synapses (as assumed in this work) 

tend to evolve unidirectional connections 17. Regarding the connectivity of the network, in 2D cell 

cultures, each neuron receives somewhere from 150 to 400 synapses 18. Because each neuron is 

contacted by eight synapses from the same neuron on average 19, the actual effective synapses in 

the model were decreased to  41.6 ± 6.4 synapses per neuron. Table 1 summarizes the graph 

properties (e.g., clustering coefficient, mean path length, degree 20 ) of the simulated network. 

Note that neurons at the border of the domain were treated exactly like the other nodes and were 

consequently connected to a smaller number of neurons.  
 

Data analysis of experimental and simulated data 

To facilitate the comparison with the experimental data, the simulated spike trains were 

subjected to the same filtering criteria used in the experiments. Thus, only neurons whose firing 

rate (i.e., average number of spikes per unit time) fell in the interval [0.1-15] Hz were considered.  

Detection and quantification of spontaneous activity in neuronal cultures 

Spike detection and spike-based quantification 
 

We quantified the spiking network activity by using standard activity parameters 14,21 such as 

the mean firing rate of the network (MFR) and the interspike interval (ISI) distribution. The MFR is 

the average of the firing rates of all of the active neurons of the network, and the ISI is the first 

order difference of the spike times. Additionally, to characterize the network burst regime, we 

quantified canonical parameters such as the mean bursting rate (MBR), the mean firing intra burst 

(MFIB) and the mean burst duration (MBD), as in 22. Finally, as most of the neurons in these 

networks participate in NBs with a burst of spikes, we defined an indirect measure of 

asynchronous network activity (Random Spikes), as the percentage of spikes that are not part of a 

burst (a sequence of 5 or more spikes separated by less than 100 ms). Bursting events (NBs) are 

stereotyped network activities characterized by a large fraction of neurons simultaneously active 

for ≃ 100𝑚𝑠, and thus, these events could be detected by setting a hard threshold on the 

instantaneous MFR 23,24. This algorithm works well on simulated data, but on real experimental 

data, the detection of NBs can be hindered by noise (e.g., false-positive spikes). We have therefore 

designed an alternative algorithm (NB-graph) based on a graph theory approach that overcomes 

this limitation. A detailed description of the algorithm and a comparison with the standard 

procedure used to detect NBs is reported in 25. 
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Spatial and temporal profile of the network bursts 

The temporal and spatial resolution of our data allowed for the faithful investigation of the 

dynamics of the network bursts, particularly how NBs occur over time and if they share some 

similarity that could be explained from the underlying organization of the network. To this end, we 

computed the NB correlation matrix to study groups of neurons with similar firing patterns. The 

entries 𝐶𝑛,𝑚 of the NB correlation matrix26 were given by the following equation: 

𝐶𝑛,𝑚 = 𝑚𝑎𝑥
𝜏
(∑𝐶𝑛,𝑚

𝑖

𝑁

𝑖=1

(𝜏)) 

where the sum runs over the neurons, and the maximum is taken on the time window of the event 

(e.g., 0 < 𝜏 < 150𝑚𝑠). The term 𝐶𝑛,𝑚
𝑖 (𝜏) represents the cross-correlation between the NBs 𝑚 and 

𝑛 of neuron 𝑖. Such entries are then reordered using a standard hierarchical clustering algorithm 

aimed at highlighting the presence of similar NBs. The optimal cut point of the dendrogram was 

obtained by maximizing the Silhouette score. In addition, the spatial propagation of the spiking 

activity during an NB was also represented in terms of its centre-of-activity trajectory (CAT 27,28).  

The CAT collapses the overall network activity to its center of mass (i.e., regions of the network 

with more activity have a higher weight), allowing for the representation of how the activity in the 

network evolves over time with just two coordinates and the clustering of NBs with similar 

propagation trajectories. In our analysis, at each time point, the CAT was computed over 20-ms 

time bins with a sliding of 1 ms. To cluster CATs with different durations (e.g., when inhibition is 

blocked), the NBs were realigned to a common time interval. 
 

Network dynamic analysis 

Emergent network activity can be explained to a large extent by the anatomical connectivity 29. 

However, such activity can also be determined by the particular dynamical state of the network. 

Thus, an analysis of the statistical relationships between firing neurons can be informative of the 

information flow in the network. To determine the strength of the functional connections in the 

network, we performed a cross-correlation analysis 8. Functional links were selected to meet two 

requirements. First, we considered the pairs of neurons whose cross-correlation peak was above 

the 95th percentile of all the computed cross-correlation values. Second, for each selected pair, we 

assigned a functional link every time that their cross-correlation peak was ranked in the top of the 

ten strongest correlation peak values for both neurons, thus determining a bi-directional 

relationship. The first condition avoids the inclusion of spurious functional connections in the 

analysis. The second condition reveals potential structural network motifs that determine 

synchronous activities in the network. The bi-directional functional connections clearly do not 

correspond to structural ones (that are unidirectional, see Annex I - Network topology for further 

details). Indeed, the functional graphs shared only 4.9 ± 1.8% of connections with the anatomical 

graph. However, these conditions allow for the determination of pathways of activity of neuronal 

pairs that receive similar inputs, either direct or indirect, from common firing neurons. The 

functional links with the longest connection (longer than 0.2, which roughly corresponds to 550 

𝜇𝑚 on the CMOS-MEA) were filtered from the analysis. 
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Detection of ignition sites 

An additional measure was used to analyze subgraphs characterized by a strong level of internal 

connectivity (also referred to as community structures 30). Ideally, the network is divided into 

groups of nodes with a maximally possible number of within-group links and a minimally possible 

number of between-group links 30. We estimated communities through the Infomap approach31, 

which determines subgraphs in a given network by minimizing the expected length of random 

walks over possible network partitions. To test the reliability of the procedure, we validated our 

results by varying the topologies (i.e., random, radius and Gauss graphs) as well as by changing the 

neuronal connectivity within the network (n=10).  

The overlap between the ignition sites (ISs) and the fCOMs was quantified as follows. First, we 

defined the area covered by an fCOM as the concave hull defined by the set of neurons of the 

fCOM. Second, to address border effect problems (i.e., assign the events that start close to the 

border of an fCOM to that fCOM), we extended the confines of the fCOMs by a factor of 5%. To 

assess if the ISs significantly overlapped with the fCOMs, we randomly reassigned (500 times) the 

detected fCOMs to another position in the network and quantified the overlap.   

Quantification of structural connectivity motifs 

To quantify the occurrence of small template subgraphs, i.e., structural motifs, in a given region 

of the network, we proceeded as follow. First, we considered all possible connected graphs of less 

than six nodes and built a list of motifs to test. Second, for each motif, we determined the number 

of isomorphic subgraphs in the target graph 32. Finally, those numbers were normalized to the total 

motifs found in the target graph. Due to computational limitations for this extensive research, 

graphs had to be turned into their undirected counterpart. To assess significant differences in the 

motif composition of a given subgraph (fCOM), we defined three different null models (sCOMs, 

rCOMs, and rndCOMs) with the same number of nodes as that of the original subgraph. The sCOM 

was generated following a two-step procedure. At first, we applied the Infomap algorithm to a 

portion of the structural network that excluded the nodes of the fCOMs. The Infomap algorithm 30 

allows for the partitioning of the complementary network into structural communities for which 

the information flow within the community is maximized and the information transmission 

towards the remaining neurons of the network is minimized. To faithfully compare an sCOM to an 

fCOM, the size of the sCOMs was constrained to be the same as that of the fCOMs. This down-

sampling was performed by removing nodes from the sCOM and maximizing the spatial density of 

the remaining nodes of the subgraph. The latter step was intended to avoid poorly connected 

regions of the network. The rCOM subgraphs were obtained as follows. First, a node in the 

complementary network was randomly chosen, and the closest K-1 nodes were aggregated (K is 

the size of the compared graph). Finally, the rndCOM subgraphs were obtained by turning the 

original fCOM into a random graph, i.e., preserving the number of nodes and edges but randomly 

reassigning the links.  

Even though the sCOMs and rCOMs have a different number of edges than the fCOMs, they are 

useful to compare equivalent regions of the network that do not elicit NBs. However, the rndCOMs 

have the same number of edges as the structural graph and can be used as a null model to 

investigate the relevance of the topology. The significant difference in the motif composition was 
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assessed through paired t-tests (fCOMs compared to null models) at level p=0.05. 

Detection and clustering of pre-NB spiking activity 

To relate the spiking activity preceding a spontaneous burst event (pre-NBs) to the subsequent 

propagating event, we took advantage of the NB-graph algorithm 25 (with parameters τNB = 10 

ms, dNB = 1 8⁄ ). With the aim of determining whether pre-NB spikes shared similar 

spatiotemporal structures (i.e., temporal motifs), all pre-NB spikes falling in the 100 ms preceding 

the starting point of an NB were analyzed. This was done by considering the largest connected 

component (i.e., αL, βL) of the induced NB-graphs (i.e., αG, βG). Two pre-NB motifs that share a 

common subgraph of at least M=6 spikes (6-motif) are declared as similar. Importantly, the 

parameters τNB, and dNB allow for the declaration of two spike patterns as being similar even if 

they are not identical. That is, shared temporal patterns can be regarded as jittered versions of the 

same spike pattern, and the similarity measure is robust to these variants.  

The similarity of the network motifs was computed in terms of the matrix: 𝑆𝑀(𝑋, 𝑌) =

∑ ∑ 𝐾𝑦𝑥 (𝑥, 𝑦) 𝑁⁄ , where x,y are NB events of the clusters X,Y and the sums run over the x,y 

elements of the clusters X,Y. K(x,y) is the Kronecker distance (equal to 1 if x is similar to y, 0 

otherwise), and 𝑁 is a normalization factor given by 𝑁 = ∑ 𝑆𝑦 𝑀(𝑋, 𝑦) ⋅ ∑ 𝑆𝑥 𝑀(𝑥, 𝑌). To compare 

the pre-NB spiking sequences for all NBs, a similarity index was introduced and defined as follows: 
 

𝑆 =
∑ 𝑆𝑋 𝑀(𝑋, 𝑋)

∑ 𝑆𝑋,𝑌 𝑀(𝑋, 𝑌)
 

 

To quantify the similarity among NBs, we defined the ‘per-cluster’ measure as a weighted 

average with respect to the cluster size and the ‘ALL’ measure, defined on all trajectories 

irrespective of the cluster’s size. To further characterize how the number of shared pre-NB spikes 

influences the measure of similarity, shown in, we reported the cumulative similarity curve from 

M=6 to M=66. The similarity was also computed for pairs of pre-NB activities belonging to the 

same NB cluster (IN) or among pre-NB activities belonging to distinct NB clusters (ACROSS).  
 

Tables of parameters 
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Annex II - Preparation of mouse retina 

whole-mounts on CMOS-MEAs 
 

 

 

Ethics Statement 

All the experiments were performed in accordance with the guidelines established by the 

European Community Council (Directive 2010/63/EU of 22 September 2010). All procedures 

involving experimental animals were approved by the institutional IIT Ethic Committee and by the 

Italian Ministry of Health and Animal Care (Authorization number 110/2014-PR, December 19, 

2014). 

 

Retina preparation for high-resolution CMOS-MEA recordings 
 

Twelve hours dark-adapted male mice (6 weeks old C57BL/6) were barely anesthetized with 

CO2 and subsequently killed by cervical dislocation. After eyeballs enucleation retina was extracted 

by accurately removing all the surrounding tissues as cornea, crystalline, sclera and vitreous. Once 

isolated, the retina was faced down onto a pre-conditioned MEA (its reservoir was filled with 

Neurobasal for 2 hours at 37°) putting the retinal ganglion layer in contact with its surface and 

leaving the photoreceptor layer exposed. On top of this latter was placed a polyester membrane 

filter (Sterlitech Corp., Kent, WA, USA) held in turn by a circular anchor. A perfusion line, supplied 

by a peristaltic pump (∼1 ml /min), ensured a constant flow of a media composed by AMES’s 

medium (Sigma - Merck KGaA, Darmstadt, Germany) with 1.9g/L of sodium bicarbonate 

equilibrated with carboxigen (95% O2 and 5% CO2). 
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Annex III - Evaluation reports and reviews 

I sincerely thank Dr. Tim Gollisch and Dr. Michele Giugliano for their evaluation of the preliminary 

draft of my dissertation. Here, I report a summary of the changes that I have made during the 

revision by taking into consideration all the specific points raised by Dr. Tim Gollisch. 

 Foremost, the thesis should benefit from a thorough proofreading to reduce the number of 

grammatical errors and typos.  
 

I apologize to the reviewer for the lack of English quality of the first manuscript.  I have deeply 

revised the text of the manuscript to improve its readability and to remove grammatical errors and 

typos.    

 Second, some small errors should be corrected:  

1) Page 24. Galvani’s experiments were not in 1971 but in the 18th century. 

2) Page 82. There seems to be confusion between the “inner” and “outer” side; typically 

inner refers to the layers towards the center of the eye, so horizontal cells are considered to 

be in the outer, not inner retina, and ON bipolar cells have their axonal arbors in the inner 

part of the inner plexiform layer, OFF bipolar cells in the outer part, not vice versa. 

3) Page 88. The number of types of ON‐OFF direction‐selective cells is given as eight, but 

should be four.  

4) Page 117, “to ensure that this happened as consequence of spurious correlations”. Is this 

supposed to mean “...that this did not happen...”? 

5) Page 124, “a value approaching 1100”. This should probably be “100”. 
 

I am grateful to the reviewer for pointing these mistakes out that I had not noticed. I have 

corrected all of them in the present version and specifically I have modified: 

1) Galvani’s performed his experiments in 1791 rather than 1971 

2) On the distinction between outer and inner part of the retina, the text now reads: 

“These cells, whose soma is located in the inner nuclear layer20, mainly integrate the output of 

multiple photoreceptors horizontally and provide negative feedbacks to the photoreceptors and 

bipolar cells in the outer plexiform layer4 (see below). Consequently, they are considered part of 

the outer retina from their functional role.  

(…)  

ON and OFF bipolar cells form synaptic contacts with retinal ganglion cells in specific locations of 

the inner plexiform layer: ON bipolar cells form synapses in the inner part of the inner plexiform 

layer whereas OFF bipolar cells in the outer one3. Furthermore, while the communication with 

photoreceptor is mediated by ionotropic receptors in OFF bipolar cells, ON bipolar cells integrate 

the signal through metabotropic receptors12.” 
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3) The reviewer is right and the number “eight” instead of “four” was a mistake. I know that there 

are four populations, but in the rush of editing the manuscript, I wrote eight instead. 

4) The reviewer understood the sentence correctly, despite his complexity. The text has been 

corrected as suggested to improve its readability. 

5) The reviewer is right, the number (Suppressive Index value) is “100” instead of “110” and it has 

been corrected. 

 Third, a potential caveat regarding the interpretation of response differences under full‐field 

and masked stimulation is that something like this could be the result of run‐down of the 

experimental preparation or slow adaptation effects across the course of the experiments. 

This is difficult to assess because the thesis provides little information about the order and 

duration of the different stimuli or whether the stimulation alternated between full‐field and 

masked stimuli. It might be appropriate to at least discuss briefly the potential influence of 

run‐down or adaptation of the retina.  
 

I am grateful to the evaluator for raising this point that was not sufficiently explored in the draft of 

the dissertation. To address these relevant concerns, I firstly included a more precise and detailed 

description of the protocol used in our experiments on retina whole-mounts (see Section xx). As it is 

now described, a typical full-field/masking experiment lasts about 100 minutes for each retina. 

With respect to the concern on the run-down of the responses, previous investigations and setup 

validations, which have been confirmed also with our full-field/masking protocol (Section added in 

Discussion), indicate a not significant decay of the peak response of retinal ganglion cells between 

the beginning and the end of the experiment. Under these experimental conditions, the recording 

of retinal ganglion cells exhibits a stable response up to 120-150 minutes.  

With respect to the concern on adaptation during our experiments, it has to be noted that in the 

designed protocol the retina is actively stimulated only for approximately 40 minutes, while the 

remaining time is used to project an iso-luminant gray uniform image to avoid adaptation of the 

retina to the different stimuli and trials. In particular, we interleaved visual stimulations of different 

contrasts with at least 30s of iso-luminant gray to restore the retinal processing to the reference 

baseline before evaluating its performance with other types of stimuli. By doing so, we expected to 

provide a fair quantification of the retinal response to full-field and masked stimuli condition. 

However, as also highlighted by the reviewer, a promising direction to investigate is whether the 

adaptation time scale between full-field and masked stimuli condition differs as a consequence of 

the spatial extent of the stimulus. I now discuss the potential implications of this second 

consideration in the discussion section of the dissertation (see page 119-120). 

 Fourth, some small, local aspects:  

1) Page 118. I do not see, as claimed that ON and OFF aeRGCs showed higher sensitivity to 

large bars at CT25; maybe explain. Also, what are the units of the response measures .02 and 

.09 given below? 
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2) Page 124. I don’t think that a suppressive index near 100 means that RGCs would be 

highly tuned to a particular spatial frequency; it just means that they don’t respond well to 

large bars, but could be broadly tuned for others. 

3) Page 126. Bicuculline is not sufficient to completely remove GABAergic inhibition, as it 

only blocks GABA‐A receptors and not, for example, GABA‐C receptors. 

 

I thank the reviewer for raising these points. I have inserted in the text additional clarifications to 

improve the accuracy of our statements.  

1) The statement at page 114 was too strong and poorly explained. Upon re-editing, it now reads: 

“For low contrasts stimuli (CT25), the response curve for both ON and OFF population reached a 

plateau for 0.01 cycle/deg spatial frequency bars, instead of steadily increasing until 0.02 

cycle/deg. Although the amplitude of response is significantly lower than the one to higher 

contrasts; this might indicate a slight tuning to medium-sized bars at low contrast. This intuition 

will be discussed later through the quantification of the suppressive index (see Discussion).” 

2) The statement that a suppressive index near 100 implies a tuning to a unique particular 

frequency can be misinterpreted. Indeed, a counter-example would be the case of a cell that has a 

low response to large bars but an equally higher response for a broad range of higher spatial 

frequency bars. We now clarify that the Suppressive Index, in our context, was used as a simple 

measure to quantify whether cells are tuned or untuned. Specifically, we expected that low spatial 

frequency bars would evoke a lower response compared to high spatial frequencies due to the 

surround antagonism of the receptive field. Our results reveal an opposite trend, thus suggesting 

that for most of the retinal ganglion cells, the larger is the stimulus, the higher the response will be. 

Consequently, to provide a more precise description to the reader, the text now reads: 

“A null suppressive index would mean that the RGCs are poorly tuned, i.e., their maximum 

response equals the response to the largest presented bar (i.e., 1344 µm in our case). Instead, a 

value approaching 100 would indicate that RGCs have a small (or no response at all) to the lowest 

spatial frequencies. At the same time it reveals that the cell is tuned to a single or a range of 

higher spatial frequencies.” 

3) With respect to page 121, the reviewer is right and the text has been modified accordingly: 

“While methods to selectively perturb the amacrine population needs to be established, in the 

short term we will investigate the masked and full-field responses upon administration of a 

cocktail of bicuculline and strychnine, in order to remove the inhibition mediated by GABAA and 

the glycine50.”  

 Fifth, overall the main text is relatively light on quantitative or statistical evaluations. 

Sometimes, these can be found in the figures, but this is not always easy to connect. Thus, as 

an optional suggestion, I would like to recommend checking whether more quantitative 

statements can be inserted into the text. Some examples include  
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1) the central finding that the “GAUSS” model, in contrast to other tested models, 

reproduces the time scales and firing rate distributions of the network bursts (page 47), 

2) the finding that there are “well‐segregated regions where the density of links was higher 

than the average level of the network” (page 60), 

3) the evaluation of the graph architecture of pre‐NB activity (page 65). 
 

I am grateful to the reviewer for this comment and support to improve the comprehension of my 

results. As highlighted by the reviewer, many quantifications were previously inserted in the figures 

but not in the main text. Others were not included in the previous version of the dissertation. As 

suggested I have now included some quantitative statements within the text to support the 

reported findings, both in the mentioned parts of the dissertation (points 1,2,3 raised by the 

reviewer) as well as in the rest of the text to uniform the style of the dissertation. 

 

 



 

 
 
 
 
 
 
 
 

 
 
 
 
 

December 22, 2017 
 

Evaluation of Doctoral Thesis of Davide Lonardoni 
 
I have read the dissertation thesis of Davide Lonardoni with much interest. In a combination of 
experimental data analysis and computational modeling, the thesis investigates how large‐scale 
recordings with CMOS‐based multielectrode arrays can be applied to study the signaling in neuronal 
networks. In the two major parts of the thesis, the examples of hippocampal cultures and of whole‐
mount retinas under visual stimulation are considered. In particular, the first part of the thesis 
manages to show how recorded data can be used to aid the construction and evaluation of models 
of recurrent networks so that hypotheses of the generation of network bursts can be tested. The 
second part of the thesis, on the other hand, provides important groundwork for the analysis of 
large‐scale multielectrode recordings from the retina and suggests that long‐range interactions 
shape the light response properties of retinal ganglion cells. 
 
The thesis is extensive with thought‐provoking results in both parts, nice illustrations of the findings 
and appropriate presentation of background and discussion. I therefore approve of this thesis to 
allow Davide Lonardoni access to the final dissertation. 
 
Yet, I do have a few comments and suggestions for revisions, which could improve the thesis. 
Foremost, the thesis should benefit from a thorough proofreading to reduce the number of 
grammatical errors and typos. Second, some small errors should be corrected: 1) Page 24. Galvani’s 
experiments were not in 1971, but in the 18th century. 2) Page 82. There seems to be confusion 
between the “inner” and “outer” side; typically inner refers to the layers towards the center of the 
eye, so horizontal cells are considered to be in the outer, not inner retina, and ON bipolar cells have 
their axonal arbors in the inner part of the inner plexiform layer, OFF bipolar cells in the outer part, 
not vice versa. 3) Page 88. The number of types of ON‐OFF direction‐selective cells is given as eight, 
but should be four. 4) Page 117, “to ensure that this happened as consequence of spurious 
correlations”. Is this supposed to mean “…that this did not happen…”? 5) Page 124, “a value 
approaching 1100”. This should probably be “100”. 
 
Third, a potential caveat regarding the interpretation of response differences under full‐field and 
masked stimulation is that something like this could be the result of run‐down of the experimental 
preparation or slow adaptation effects across the course of the experiments. This is difficult to 
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assess because the thesis provides little information about the order and duration of the different 
stimuli or whether the stimulation alternated between full‐field and masked stimuli. It might be 
appropriate to at least discuss briefly the potential influence of run‐down or adaptation of the 
retina. 
 
Fourth, some small, local aspects: 1) Page 118. I do not see, as claimed that ON and OFF aeRGCs 
showed higher sensitivity to large bars at CT25; maybe explain. Also, what are the units of the 
response measures .02 and .09 given below? 2) Page 124. I don’t think that a suppressive index near 
100 means that RGCs would be highly tuned to a particular spatial frequency; it just means that they 
don’t respond well to large bars, but could be broadly tuned for others. 3) Page 126. Bicuculline is 
not sufficient to completely remove GABAergic inhibition, as it only blocks GABA‐A receptors and 
not, for example, GABA‐C receptors. 
 
Fifth, overall the main text is relatively light on quantitative or statistical evaluations. Sometimes, 
these can be found in the figures, but this is not always easy to connect. Thus, as an optional 
suggestion, I would like to recommend checking whether more quantitative statements can be 
inserted into the text. Some examples include 1) the central finding that the “GAUSS” model, in 
contrast to other tested models, reproduces the time scales and firing rate distributions of the 
network bursts (page 47), 2) the finding that there are “well‐segregated regions where the density of 
links was higher than the average level of the network” (page 60), and 3) the evaluation of similarity 
of the graph architecture of pre‐NB activity (page 65). 
 
Sincerely, 
 

 
 
Tim Gollisch 
Professor for Sensory Processing in the Retina 
 



To the  
Doctoral School 
Italian Institute of Technology 
Genova, Italy 

Antwerp, January 10th 2018 

Subject: Evaluation of the PhD thesis manuscripts by Mr Alessandro Soloperto and 
of Mr Davide Lonardoni  in partial fulfilment of the European PhD title award 

Dear Madam or Sir, 

in response to your request to be part of the evaluation committee for the evaluation of 
Soloperto’s and Lonardoni’s PhD theses, this letter constitutes my positive assessment of 
the eligibility of their submitted manuscripts for the final oral defense and - if successful 
- for receiving the European PhD title award. This is based on the direct evaluation of the 
theses manuscripts received in December 2017.  

I am definitely impressed by the high quality of both Soloperto’s and Lonardoni’s PhD 
theses and their overall scientific results, which are of relevance particularly for the 
domains of Neuroengineering and fundamental Neuroscience. I have read with great 
personal scientific interest the results reported and I overall value the candidates among 
the top 15% of graduate students I supervised or otherwise had direct experience of, 
while being staff member at the Univ. of Bern (2001-2005), at the Swiss Federal Institute 
of Technology of Lausanne (2005-2008), and at the Univ. of Antwerp (2008-present).  

In the view of the scientific quality of the submitted manuscripts, their excellent 
publication and dissemination, the participation as presenters of the two candidates to 
international conferences and workshops, I have no hesitation to provide you with a 
positive evaluation for both Soloperto’s and Lonardoni’s eligibility to defend orally their 
work and - if successful - to receive the European PhD titles award. 

In conclusion, I am pleased to provide a positive review of the works by Mr Alessandro 
Soloperto and of Mr Davide Lonardoni, and I recommend no major changes to the 
manuscripts. 

Yours faithfully, 

Prof. Dr. Michele Giugliano

THEORETICAL NEUROBIOLOGY LABORATORY 
DEPARTMENT OF BIOMEDICAL SCIENCES 
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