78 research outputs found

    Epithelial sodium channel is a key mediator of growth hormone-induced sodium retention in acromegaly.: Antinatriuretic action of growth hormone

    Get PDF
    International audienceAcromegalic patients present with volume expansion and arterial hypertension, but the renal sites and molecular mechanisms of direct antinatriuretic action of GH remain unclear. Here, we show that acromegalic GC rats, which are chronically exposed to very high levels of GH, exhibited a decrease of furosemide-induced natriuresis and an increase of amiloride-stimulated natriuresis compared with controls. Enhanced Na(+),K(+)-ATPase activity and altered proteolytic maturation of epithelial sodium channel (ENaC) subunits in the cortical collecting ducts (CCDs) of GC rats provided additional evidence for an increased sodium reabsorption in the late distal nephron under chronic GH excess. In vitro experiments on KC3AC1 cells, a murine CCD cell model, revealed the expression of functional GH receptors and IGF-I receptors coupled to activation of Janus kinase 2/signal transducer and activator of transcription 5, ERK, and AKT signaling pathways. That GH directly controls sodium reabsorption in CCD cells is supported by: 1) stimulation of transepithelial sodium transport inhibited by GH receptor antagonist pegvisomant; 2) induction of alpha-ENaC mRNA expression; and 3) identification of signal transducer and activator of transcription 5 binding to a response element located in the alpha-ENaC promoter, indicative of the transcriptional regulation of alpha-ENaC by GH. Our findings provide the first evidence that GH, in concert with IGF-I, stimulates ENaC-mediated sodium transport in the late distal nephron, accounting for the pathogenesis of sodium retention in acromegaly

    What is influencing the phenotype of the common homozygous polymerase-γ mutation p.Ala467Thr?

    Get PDF
    Polymerase-γ (POLG) is a major human disease gene and may account for up to 25% of all mitochondrial diseases in the UK and in Italy. To date, >150 different pathogenic mutations have been described in POLG. Some mutations behave as both dominant and recessive alleles, but an autosomal recessive inheritance pattern is much more common. The most frequently detected pathogenic POLG mutation in the Caucasian population is c.1399G>A leading to a p.Ala467Thr missense mutation in the linker domain of the protein. Although many patients are homozygous for this mutation, clinical presentation is highly variable, ranging from childhood-onset Alpers-Huttenlocher syndrome to adult-onset sensory ataxic neuropathy dysarthria and ophthalmoparesis. The reasons for this are not clear, but familial clustering of phenotypes suggests that modifying factors may influence the clinical manifestation. In this study, we collected clinical, histological and biochemical data from 68 patients carrying the homozygous p.Ala467Thr mutation from eight diagnostic centres in Europe and the USA. We performed DNA analysis in 44 of these patients to search for a genetic modifier within POLG and flanking regions potentially involved in the regulation of gene expression, and extended our analysis to other genes affecting mitochondrial DNA maintenance (POLG2, PEO1 and ANT1). The clinical presentation included almost the entire phenotypic spectrum of all known POLG mutations. Interestingly, the clinical presentation was similar in siblings, implying a genetic basis for the phenotypic variability amongst homozygotes. However, the p.Ala467Thr allele was present on a shared haplotype in each affected individual, and there was no correlation between the clinical presentation and genetic variants in any of the analysed nuclear genes. Patients with mitochondrial DNA haplogroup U developed epilepsy significantly less frequently than patients with any other mitochondrial DNA haplotype. Epilepsy was reported significantly more frequently in females than in males, and also showed an association with one of the chromosomal markers defining the POLG haplotype. In conclusion, our clinical results show that the homozygous p.Ala467Thr POLG mutation does not cause discrete phenotypes, as previously suggested, but rather there is a continuum of clinical symptoms. Our results suggest that the mitochondrial DNA background plays an important role in modifying the disease phenotype but nuclear modifiers, epigenetic and environmental factors may also influence the severity of disease

    Common data elements for clinical research in mitochondrial disease: a National Institute for Neurological Disorders and Stroke project

    Get PDF
    Objectives The common data elements (CDE) project was developed by the National Institute of Neurological Disorders and Stroke (NINDS) to provide clinical researchers with tools to improve data quality and allow for harmonization of data collected in different research studies. CDEs have been created for several neurological diseases; the aim of this project was to develop CDEs specifically curated for mitochondrial disease (Mito) to enhance clinical research. Methods Nine working groups (WGs), composed of international mitochondrial disease experts, provided recommendations for Mito clinical research. They initially reviewed existing NINDS CDEs and instruments, and developed new data elements or instruments when needed. Recommendations were organized, internally reviewed by the Mito WGs, and posted online for external public comment for a period of eight weeks. The final version was again reviewed by all WGs and the NINDS CDE team prior to posting for public use

    Familial Glucocorticoid Receptor Haploinsufficiency by Non-Sense Mediated mRNA Decay, Adrenal Hyperplasia and Apparent Mineralocorticoid Excess

    Get PDF
    Primary glucocorticoid resistance (OMIM 138040) is a rare hereditary disease that causes a generalized partial insensitivity to glucocorticoid action, due to genetic alterations of the glucocorticoid receptor (GR). Investigation of adrenal incidentalomas led to the discovery of a family (eight affected individuals spanning three generations), prone to cortisol resistance, bilateral adrenal hyperplasia, arterial hypertension and hypokalemia. This phenotype exacerbated over time, cosegregates with the first heterozygous nonsense mutation p.R469[R,X] reported to date for the GR, replacing an arginine (CGA) by a stop (TGA) at amino-acid 469 in the second zinc finger of the DNA-binding domain of the receptor. In vitro, this mutation leads to a truncated 50-kDa GR lacking hormone and DNA binding capacity, devoid of hormone-dependent nuclear translocation and transactivation properties. In the proband's fibroblasts, we provided evidence for the lack of expression of the defective allele in vivo. The absence of detectable mutated GR mRNA was accompanied by a 50% reduction in wild type GR transcript and protein. This reduced GR expression leads to a significantly below-normal induction of glucocorticoid-induced target genes, FKBP5 in fibroblasts. We demonstrated that the molecular mechanisms of glucocorticoid signaling dysfunction involved GR haploinsufficiency due to the selective degradation of the mutated GR transcript through a nonsense-mediated mRNA Decay that was experimentally validated on emetine-treated propositus' fibroblasts. GR haploinsufficiency leads to hypertension due to illicit occupation of renal mineralocorticoid receptor by elevated cortisol rather than to increased mineralocorticoid production reported in primary glucocorticoid resistance. Indeed, apparent mineralocorticoid excess was demonstrated by a decrease in urinary tetrahydrocortisone-tetrahydrocortisol ratio in affected patients, revealing reduced glucocorticoid degradation by renal activity of the 11β-hydroxysteroid dehydrogenase type 2, a GR regulated gene. We propose thus that GR haploinsufficiency compromises glucocorticoid sensitivity and may represent a novel genetic cause of subclinical hypercortisolism, incidentally revealed bilateral adrenal hyperplasia and mineralocorticoid-independent hypertension

    Lack of Renal 11 Beta-Hydroxysteroid Dehydrogenase Type 2 at Birth, a Targeted Temporal Window for Neonatal Glucocorticoid Action in Human and Mice

    Get PDF
    International audienceBackground Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2). This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse. Methods Cortisol (F) and cortisone (E) concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity) and between plasma and urine in newborns (renal activity). Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species. Results We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein. Conclusions We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming

    Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective?

    Get PDF
    BACKGROUND: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. RESULTS: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and severe developmental delays in four patients. More than 70% of the patients were able to perform the same activities of daily living when compared to peers. CONCLUSIONS: Our data show that riboflavin treatment improves complex I activity in the majority of patient-derived fibroblasts tested. This effect was also reported for most of the treated patients and is mirrored in the survival data. In the patient group with disease-onset below 1 year of age, we observed a statistically-significant better survival for patients treated with riboflavin

    Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: Is riboflavin supplementation effective?

    Get PDF
    Background: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. Results: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and

    Kinetic analysis of ATP hydrolysis by complex V in four murine tissues: Towards an assay suitable for clinical diagnosis

    No full text
    International audienceBACKGROUND:ATP synthase, the mitochondrial complex V, plays a major role in bioenergetics and its defects lead to severe diseases. Lack of a consensual protocol for the assay of complex V activity probably explains the under-representation of complex V defect among mitochondrial diseases. The aim of this work was to elaborate a fast, simple and reliable method to check the maximal complex V capacity in samples relevant to clinical diagnosis.METHODS:Using homogenates from four different murine organs, we tested the use of dodecylmaltoside, stability of the activity, linearity with protein amount, sensitivity to oligomycin and to exogenous inhibitory factor 1 (IF1), influence of freezing, and impact of mitochondrial purification.RESULTS:We obtained organ-dependent, reproducible and stable complex V specific activities, similar with fresh and frozen organs. Similar inhibition by oligomycin and exogenous IF1 demonstrated tight coupling between F1 and F0 domains. The Michaelis constant for MgATP had close values for all organs, in the 150-220 μM range. Complex V catalytic turnover rate, as measured in preparations solubilized in detergent using immunotitration and activity measurements, was more than three times higher in extracts from brain or muscle than in extracts from heart or liver. This tissue specificity suggested post-translational modifications. Concomitant measurement of respiratory activities showed only slightly different complex II/complex V ratio in the four organs. In contrast, complex I/complex V ratio differed in brain as compared to the three other organs because of a high complex I activity in brain. Mitochondria purification preserved these ratios, except for brain where selective degradation of complex I occurred. Therefore, mitochondrial purification could introduce a biased enzymatic evaluation.CONCLUSION:Altogether, this work demonstrates that a reliable assay of complex V activity is perfectly possible with very small samples from frozen biopsies, which was confirmed using control and deficient human muscles
    corecore