
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ATAD3 gene cluster deletions cause cerebellar dysfunction
associated with altered mitochondrial DNA and cholesterol
metabolism
Citation for published version:
Desai, R, Frazier, AE, Durigon, R, Patel, H, Jones, AW, Rosa, ID, Lake, NJ, Compton, AG, Mountford, HS,
Tucker, EJ, Mitchell, ALR, Jackson, D, Sesay, A, Di Re, M, Van Den Heuvel, LP, Burke, D, Francis, D,
Lunke, S, McGillivray, G, Mandelstam, S, Mochel, F, Keren, B, Jardel, C, Turner, AM, Andrews, PI,
Smeitink, J, Spelbrink, JN, Heales, SJ, Kohda, M, Ohtake, A, Murayama, K, Okazaki, Y, Lombès, A, Holt, IJ,
Thorburn, DR & Spinazzola, A 2017, 'ATAD3 gene cluster deletions cause cerebellar dysfunction
associated with altered mitochondrial DNA and cholesterol metabolism', Brain, vol. 140, no. 6, pp. 1595-
1610. https://doi.org/10.1093/brain/awx094

Digital Object Identifier (DOI):
10.1093/brain/awx094

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Brain

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Oct. 2023

https://doi.org/10.1093/brain/awx094
https://doi.org/10.1093/brain/awx094
https://www.research.ed.ac.uk/en/publications/0fe0d1cf-d137-48c3-89f3-897af3c381f2


ATAD3 gene cluster deletions cause cerebellar
dysfunction associated with altered
mitochondrial DNA and cholesterol
metabolism
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Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among

the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput

sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease

mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes.

Although high homology complicates genomic analysis of the ATAD3 defects, they can be identified by targeted analysis of

standard single nucleotide polymorphism array and whole exome sequencing data. We report deletions that generate chimeric

ATAD3B/ATAD3A fusion genes in individuals from four unrelated families with fatal congenital pontocerebellar hypoplasia,

whereas a case with genomic rearrangements affecting the ATAD3C/ATAD3B genes on one allele and ATAD3B/ATAD3A

genes on the other displays later-onset encephalopathy with cerebellar atrophy, ataxia and dystonia. Fibroblasts from affected

individuals display mitochondrial DNA abnormalities, associated with multiple indicators of altered cholesterol metabolism.

Moreover, drug-induced perturbations of cholesterol homeostasis cause mitochondrial DNA disorganization in control cells,

while mitochondrial DNA aggregation in the genetic cholesterol trafficking disorder Niemann-Pick type C disease further corrob-

orates the interdependence of mitochondrial DNA organization and cholesterol. These data demonstrate the integration of mito-

chondria in cellular cholesterol homeostasis, in which ATAD3 plays a critical role. The dual problem of perturbed cholesterol

metabolism and mitochondrial dysfunction could be widespread in neurological and neurodegenerative diseases.
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16 Inserm U1016; CNRS UMR 8104; Université Paris-Descartes-Paris 5; Institut Cochin, 75014 Paris, France
17 Department of Clinical Genetics, Sydney Children’s Hospital, Sydney, NSW, Australia
18 School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW, Australia
19 Department of Paediatric Neurology, Sydney Children’s Hospital, Sydney, NSW, Australia
20 Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London, UK
21 Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama,

Japan
22 Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
23 Department of Metabolism, Chiba Children’s Hospital, Chiba, Japan
24 Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University,

Hidaka-shi, Saitama, Japan
25 Biodonostia Health Research Institute, 20014 San Sebastián, Spain. IKERBASQUE, Basque Foundation for Science, 48013

Bilbao, Spain
26 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery,

Queen Square, London WC1N 3BG, UK

†Present address: Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, OX3 0BP, UK

Correspondence to: David Thorburn

Murdoch Childrens Research Institute, Royal Children’s Hospital and Department of Paediatrics,

University of Melbourne, Melbourne VIC 3052, Australia

E-mail: david.thorburn@mcri.edu.au

Correspondence to: Antonella Spinazzola

Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK

E-mail; a.spinazzola@ucl.ac.uk

Keywords: mitochondrial DNA; mitochondrial disease; cerebellar hypoplasia; ATAD3; cholesterol

Introduction
Mutations in mtDNA and in the nuclear-encoded factors

required for mtDNA maintenance and expression result in

a broad range of human diseases, most of which affect the

CNS (Area-Gomez and Schon, 2014). Originally believed

to float free in the mitochondrial matrix unfettered by

packaging proteins, it is now established that mtDNA is

organized in nucleoprotein complexes, called nucleoids,

which are associated with the inner mitochondrial mem-

brane (Spelbrink, 2010). The apparatus mediating the inter-

action with the inner mitochondrial membrane is predicted

to have a role in mtDNA organization and distribution,

and its dysfunction might result in alteration of nucleoid

structure and composition, which in turn could adversely

affect mtDNA segregation and membrane architecture,

leading to disease. Cholesterol co-sediments with the

mtDNA (Gerhold et al., 2015) and if the association is

physiologically meaningful, perturbed cholesterol homeo-

stasis should result in mtDNA abnormalities, as should de-

fects in factors effecting cholesterol–mtDNA interactions.

A candidate to participate in such interactions is ATAD3,

ATPase family, AAA + domain containing 3, which was

assigned as a detergent-resistant component of mitochon-

drial nucleoids with potential roles in mtDNA organization

and segregation (He et al., 2007) and enhancing hormonal-

induced steroidogenesis (Issop et al., 2015). Moreover,

ATAD3 co-purifies with SPTLC1 and SPTLC2 (serine pal-

mitoyltransferase, long chain base subunits 1 and 2) (He

et al., 2012) that synthesize sphingolipids, which form

membrane micro-domains with cholesterol, and a small

fraction of ATAD3 forms an 800 kDa complex that co-mi-

grates with a labelled cholesterol probe (Rone et al., 2012).

Hence, ATAD3 may have overlapping roles in cholesterol
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distribution in mitochondria and mtDNA organization.

ATAD3 has also been linked to adipogenesis and lipid me-

tabolism (Hoffmann et al., 2009), mitochondrial transla-

tion (He et al., 2012) and iron and heme homeostasis

(van den Ecker et al., 2015).

Most species have a single ATAD3 gene but hominids

have a cluster of three genes arranged in tandem close to

the telomere of chromosome 1p: ATAD3C, ATAD3B and

ATAD3A. A recurrent de novo dominant missense mutation

in ATAD3A was recently shown to cause a phenotype com-

prising global developmental delay, hypotonia, optic atro-

phy, axonal neuropathy, and hypertrophic cardiomyopathy

in five unrelated subjects (Harel et al., 2016). That study also

identified a homozygous ATAD3A missense mutation in sib-

lings with congenital cataract, ataxia and seizures plus bial-

lelic deletions of ATAD3A and adjacent ATAD3 genes in

one subject with severe cerebellar hypoplasia and neonatal

death. A dominant mutation in ATAD3A was later

described to cause hereditary spastic paraplegia and axonal

neuropathy (Cooper et al., 2017). Here, we report six sub-

jects with cerebellar pathology, all associated with biallelic

genomic rearrangements affecting the ATAD3 gene cluster.

In four of five families, the affected individuals had fatal

congenital pontocerebellar hypoplasia with a simplified

gyral pattern, and the single adult case had cerebellar atro-

phy with dystonia and ataxia. At the cellular level, we

demonstrated that ATAD3 deficiency causes aberrant

mtDNA organization and is associated with elevated free

cholesterol and increased expression of genes involved in

cholesterol metabolism. We also show that genetic or

pharmacological perturbations of cellular cholesterol homeo-

stasis perturb mtDNA organization. The consequences of the

ATAD3 deletions for mtDNA organization and cholesterol

metabolism offer a pathogenetic explanation for the disorder.

Materials and methods

Determination of deletion and
breakpoints

Molecular karyotyping of DNA was performed with the
Illumina HumanCytoSNP-12 (version 2.1) or Infinium
CoreExome-24 arrays, as previously described (Bruno et al.,
2011). Automated detection of long contiguous segments of
homozygosity was performed with the CNVPartition v3.1.6
algorithm in KaryoStudio software. SNP genotypes were gen-
erated in GenomeStudio software (Illumina) with data from a
set of 102 intra-run samples.

A custom comparative genomic hybridization (CGH)
NimbleGen 12 � 135 K array (Roche Diagnostics) was de-
signed to densely tile 1034 MitoExome genes encoding
known mitochondrial proteins (Calvo et al., 2012). Targeted
exonic regions were tiled to an average probe spacing of 50 bp,
intronic regions to an average of 900 bp, and regions directly
upstream and downstream of targeted genes were covered
forming a low-resolution backbone tiled at 3600 bp. CGH
arrays were performed, scanned and analysed in accordance

with manufacturer’s recommendations using gender matched,
pooled DNA from seven unaffected individuals as a control.

Intragenic deletions were further investigated by long-range
PCR amplification and sequencing of the junction region
(BigDye� v3.1 terminators; Applied Biosystems) to better
define the breakpoints. The primer sequences used in this
study and their binding sites within the ATAD3 region are
shown in Supplementary Fig. 1.

Gene-specific RNA studies

RNA was extracted from cultured fibroblasts using the Illustra
RNAspin Mini Kit (GE healthcare) and cDNA was generated
using the SuperScript� III First strand synthesis system
(Invitrogen) as per manufacturers’ protocols. For analysis of
nonsense-mediated decay and mRNA splicing, fibroblasts were
cultured in medium with and without 100 ng/ml cycloheximide
for 24 h before RNA preparation (Lamande et al., 1998).
Quantitative reverse transcription (qRT)-PCR analysis of fibro-
blast ATAD3A and ATAD3B expression was performed as
previously described for other genes (Tucker et al., 2013),
with the following modifications; each 20 ml PCR reaction con-
tained 2.5 ml of cDNA synthesized from 800 ng of mRNA,
10 ml of SensiFAST

TM

SYBR� Green (Bioline) and 0.5 mM
each of forward and reverse primers, and was measured in
triplicate on each plate. Nucleotide variation between
ATAD3A and ATAD3B transcripts and primers used are high-
lighted in Supplementary Fig. 1B. Results were normalized to
HPRT expression (primers 5’-CCTGGCGTCGTGATTAGT
GA and 5’-CGAGCAAGACGTTCAGTCCT) and Sanger
sequencing of amplicons confirmed specificity.

RNA-Seq analysis

For each sample, total RNA was extracted from �8 � 106

fibroblasts using TRIzol� reagent (Sigma), quantified by
NanoDrop and quality checked using the Agilent
Bioanalyzer. Samples that showed minimal degradation as
measured by RNA integrity number (RIN)48.0 were further
processed for Illumina sequencing library preparation with the
TruSeq Stranded mRNA HT Sample Prep Kit (Illumina, Part#
RS-122-2103). Libraries were generated from 1 mg of total
RNA and sequenced on the Illumina HiSeq 4000, using the
paired-end 101 bp dual indexing protocol. FastQ files were
generated using CASAVA BCL to FastQ (version 2.16).
Sequencing yield was typically �70 million strand-specific
paired-end reads. The RSEM package (version 1.2.29) (Li
and Dewey, 2011) in conjunction with the STAR alignment
algorithm (version 2.5.1b) (Dobin et al., 2013) was used for
the mapping and subsequent gene-level counting of the
sequenced reads with respect to hg19 Ensembl genes down-
loaded from the UCSC Table Browser (Karolchik et al.,
2004) on 14 April 2016. The ‘–forward-prob’ parameter was
set to ‘0’ and all other parameters were kept as default.
Differential expression analysis was performed with the
DESeq2 package (version 1.10.1) (Love et al., 2014) within
the R programming environment (version 3.2.3) (R Core
Team, 2015). An adjusted P-value of40.05 was used as the
significance threshold for the identification of differentially ex-
pressed genes. All raw RNA-Seq sequence data and per sample
transcript per million counts generated by RSEM can be ac-
cessed via GEO (GEO ID GSE86550).
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Pathway analysis

Gene set enrichment analysis for differentially expressed genes
was performed by Gene Ontology Pathway and Biological pro-
cesses using GeneGo MetaCore (https://portal.genego.com/).

Gene set enrichment analysis

Genes from each given pairwise comparison were ranked using
the Wald statistic. Gene set enrichment analysis (GSEA;
Subramanian et al., 2005) pre-ranked analysis was performed
with respect to MSigDB (version 5.1) C2 canonical pathways
and C5 GO biological process. All parameters were kept as
default except for enrichment statistic (classic), min size (5)
and max size (50 000). Gene signatures with a false discovery
rate (FDR) q-value of4 0.05 were considered to be significant.

Cell culture, DNA and enzyme
analysis

Primary fibroblasts were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Life Technologies) supplemented
with 10% foetal bovine serum (Hyclone), 1% penicillin and
streptomycin (PS, Life Technologies) at 37�C in a 5% CO2

atmosphere. All cells were negative for mycoplasma based on
regular screening using LookOut� Mycoplasma PCR
Detection Kit (Sigma). Total DNA was isolated from cultured
human fibroblasts using DNeasy� Blood and Tissue Kit
(QIAGEN), or from fibroblasts or blood using a
NucleoBond� CB20 DNA Extraction kit (Scientifix), according
to the manufacturer’s protocol. Estimation of mtDNA copy
number was performed by quantitative PCR, as described pre-
viously for tissue biopsies (Pagnamenta et al., 2006) and cul-
tured fibroblasts (Dalla Rosa et al., 2016).

Spectrophotometric enzyme assays assessing mitochondrial
OXPHOS enzyme activities were performed in cultured fibro-
blast mitochondria and skeletal muscle or liver biopsy post-
nuclear supernatants from Subjects S1a, S1b and S3 as
described previously (Frazier and Thorburn, 2012).
OXPHOS enzymes in skeletal muscle post-nuclear super-
natants from Subject S5 were assayed as described elsewhere
(Medja et al., 2009).

Immunoblotting

Protein fractionation, transfer and immuno-detection were per-
formed as described (Dalla Rosa et al., 2014), with some
modifications. Muscle and liver samples were prepared as pre-
viously described (Cooper et al., 2003). Cells were lysed on ice
in phosphate-buffered saline (PBS), 0.1% n-dodecyl b-D-malto-
side (DDM), 1% SDS, 1 � protease inhibitor cocktail (Roche),
50 U Benzonase� and phosphatase inhibitor complexes (Cell
signalling), or in RIPA buffer containing 1� protease inhibitor
cocktail (Roche). Protein concentration was measured by
Lowry assay (DC

TM

Reagent, Bio-Rad) or BCA assay, and
10 mg of lysate analysed per lane. Primary antibodies were:
mouse anti-GAPDH (1:20 000, Abcam), mouse anti-NDUFB8
(1:1000, Abcam), mouse anti-COX II (1:2000, Abcam), mouse
anti-VDAC1 (Porin) (1:10000, Merck), rabbit anti-ATAD3
(1:60 000, gift from John Walker), rabbit anti-SREBF2
(1:1000, Abcam), rabbit anti-CES-1 (1:2000, Proteintech).

Immunocytochemistry and cell
imaging

Fibroblast cultures were incubated with 20 mM BrdU for 8 h
and fixed with 2% paraformaldehyde for 15 min at room tem-
perature, then treated with PBS containing 0.2% Triton

TM

X-
100. After a 5 min PBS wash, cells were incubated for 90 min
at 40�C in 2N HCl. Cells were blocked with 5% goat serum in
PBS for 1 h, then incubated with primary antibody in PBS at
4�C overnight and subsequently with secondary antibodies for
2 h at ambient temperature. A 90 min incubation at room
temperature with Alexa Fluor� 488 conjugated streptavidin
(Invitrogen) was followed with a final set of PBS washes.
The coverslips were mounted on glass slides using Progold
with DAPI. For staining that did not include BrdU the HCl
antigen retrieval step was omitted. Primary antibodies: mouse
anti-DNA Progen (1:200, AC-30-10); rat anti-BrdU Bio-Rad
(1:200, MCA2060); rabbit anti-Tom20 (1:400 Santa Cruz).
Secondary antibodies: Alexa Fluor� 488 goat anti-mouse
(1:500); Alexa Fluor� 488 goat anti-rat (1:500); Alexa
Fluor� 568 goat anti-rabbit (1:1000). Unesterified cholesterol
in fibroblasts was stained with filipin, using a cholesterol assay
kit (Abcam), detected by wide-field fluorescence microscopy
and quantified using ImageJ.

Mitochondrial DNA foci sizing and
counting

Nucleoid size was analysed using 3D confocal images of human
fibroblast cells stained with anti-DNA antibody. Images were
acquired using parameters set for a control field of cells at the
beginning of each microscopy session. Individual files were put
through particle analysis using Fiji (ImageJ), with a fluorescence
intensity threshold set manually, such that only signal above
background was considered. This threshold was maintained
for all images. Then the Fiji plugin, 3D particle count, was
used to count the number of particles across the stack of optical
sections. The plug-in counts each particle and defines its size,
generating datasets based on �1500–5000 particles. The par-
ticle information was transferred to a spreadsheet and arranged
in ascending order by size. The total number of particles were
then binned into 20 size categories (bins) and presented as a
histogram. No attempt was made to create parameter settings
that would produce an accurate estimate of the total number of
mtDNA foci (nucleoid number) in a cell.

Results

Clinical and biochemical features
associated with deletions in the
ATAD3 gene cluster

Six subjects from five unrelated families were included in

the study (Fig. 1A), with four from consanguineous

families. Informed consent for diagnostic and research stu-

dies was obtained for all subjects in accordance with the

Declaration of Helsinki protocols and approved by local

institutional review boards. Clinical features are
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summarized in Table 1, with brain imaging shown in Fig.

1B. Five of six subjects had an antenatal disease, associat-

ing lack of foetal movements or polyhydramnios, dys-

morphic features and severe encephalopathy with marked

pontocerebellar hypoplasia with a simplified gyral pattern.

Subject S5 had a milder presentation characterized by

mental retardation and dystonia in childhood, followed

by onset of cerebellar ataxia and atrophy in adulthood.

Detailed clinical descriptions are provided in the

Supplementary material. Elevated blood or CSF lactate

was noted in all the live-born neonatal subjects but not

in Subject S5 (Table 1). Borderline deficiencies of

OXPHOS enzymes were observed in tissues or cell lines

from some patients, but these features were variable and

did not lead to definitive diagnosis of mitochondrial disease

(Table 1 and Supplementary Table 1; see also de Koning

et al., 1999).

ATAD3 gene cluster deletions

Deletions in the ATAD3 gene cluster were identified in af-

fected individuals, using SNP and CGH arrays (Fig. 2A and

Figure 1 Pedigrees and brain MRI from five unrelated families with cerebellar disorders. (A) Pedigrees and ATAD3 genotypes for

available members of Families 1–5. (B) Brain MRI of Subjects S1a, S3, S4 and S5. Top row: Sagittal images of Subjects S1a, S3 and S4 in the neonatal

period and Subject S5 at 22 years of age. The neonates have severe brainstem and cerebellar hypoplasia with flat pons (short arrows) and tiny

cerebellar vermis (long arrows). There is increase of the tegmento-vermian angle and ex vacuo enlargement of the posterior fossa CSF spaces.

Arrowheads indicate the thin corpus callosum. Stars in Subject S3 show isointense blood products within and below the fourth ventricle. Subject

S5 presents with severe hypoplasia/atrophy of the cerebellar vermis (thick arrow) with ex vacuo enlargement of the fourth ventricle; brainstem and

normal corpus callosum are normal. Bottom row: Axial T2-weighted images show simplified sulcation and gyration more marked frontally (short

arrow) and diffuse white matter T2 signal abnormality (long arrow) in Subjects S1a and S4. Similar but less severe changes are seen in Subject S3

with shallow simplified sulcation. Both subjects had a thin cortical ribbon, decreased white matter volumes with marked T2 hyperintensity, ex

vacuo ventriculomegaly (stars) and prominence of the extra-axial CSF spaces in keeping with brain atrophy. Hypointense material within the lateral

ventricles of Subject S3 is haemorrhage. Subject S5 has normal ventricles and subtle ‘frosted glass’ aspect of the posterior periventricular white

matter (thick arrow). del = ATAD3 deletion; WT = wild-type.
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Figure 2 Identification of genomic ATAD3 deletions. (A) A custom CGH array was used to delineate homozygous deletions detected on

chromosome 1 p in DNA from Subjects S1a and S2. Shaded boxes indicate the location of the ATAD3C, ATAD3B and ATAD3A genes. Details of

deleted regions predicted by SNP and CGH arrays are summarized in Supplementary Table 2. (B) Long-range PCRs were performed on genomic

DNA from subjects and controls. Primers OT472 and OT473 (middle panel) flank the ATAD3 deletion breakpoints predicted in Subject S1a by

array CGH. Primers OT572 and OT575 (bottom panel) flank the ATAD3 deletion breakpoints predicted in S2 by array CGH. As a control,

primers OT570 and OT575 (top panel) were used since primer OT570 is located within the predicted deleted ATAD3B/ATAD3A region. (C)

Genomic DNA sequencing of the breakpoint-spanning PCR products determined the ATAD3B/ATAD3A deletion boundaries in each subject, with

chromosome 1 coordinates indicated (hg19). Ambiguous regions flanking the deletion boundaries that have identical sequence in ATAD3B and

ATAD3A are identified by dark grey boxes. The deletion predicted by high-density SNP array for Subject S5 is indicated, with maximum and

minimum deletion boundaries labelled by hatched boxes.
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Supplementary Table 2), and validated by long-range PCR

(Fig. 2B and Supplementary Fig. 2). The five neonates with

pontocerebellar hypoplasia all had biallelic deletions in the

ATAD3B/ATAD3A region. In each case the exact break-

points could not be precisely defined due to sequence iden-

tity within the breakpoint regions (i.e. substantial portions of

the ATAD3 genes constitute direct repeats) (Supplementary

Fig. 2). Subjects S1a and S1b had a homozygous deletion of

38 054 bp while Subjects S2 and S3 both had homozygous

deletions of 38 667 bp but with different breakpoints (Fig.

2A–C and Supplementary Fig. 2). Subject S4 was compound

heterozygous for 38 054 bp and 38 667 bp deletions.

Analysis of DNA from available unaffected members of

each family indicated they each carried at least one wild-

type ATAD3 allele (Supplementary Fig. 3).

The deletions in Subjects S1 to S4 all predict the gener-

ation of a fusion gene between ATAD3B and ATAD3A

(Fig. 2C and Supplementary Fig. 2A and C). S1a, S1b

and paternal S4 deletions predict an mRNA fusion occur-

ring near exon 5 while S2, S3 and S4 maternal deletions

predict an mRNA fusion near exons 3 and 4 (Fig. 3A and

Supplementary Fig. 4A–C). Hence, the expected transcripts

would use the branch point and acceptor splice site for

ATAD3B exon 5 in S1 and paternal S4 alleles, and the

ATAD3A sites for the S2, S3 and maternal S4 alleles (cf.

Supplementary Fig. 4B and 4C). Because of 100% hom-

ology of exons 3, 4 and 5 of ATAD3B and ATAD3A,

the structure of the mRNA transcripts in all subjects was

expected to be identical and cDNA amplification and

sequencing was consistent with this interpretation (Fig. 3B

and Supplementary Figs 4D and 5A). The predicted

ATAD3B/ATAD3A fusion protein should be identical to

ATAD3A isoform 2, apart from two missense variants

(p.I7V and p.D73E, Supplementary Fig. 5C), and transcrip-

tion under the ATAD3B promoter. qRT-PCR, using pri-

mers designed to distinguish between ATAD3B and

ATAD3A, indicated that fibroblasts from Subjects S1a, S3

and S4 lacked any detectable ATAD3B mRNA and had

decreased expression of ATAD3A (Fig. 3C).

High density SNP array analysis of Subject S5 indicated

that one allele carried an ATAD3C/ATAD3B deletion of 43

to 61 kbp in size, while long-range PCR suggested the second

allele had a similar ATAD3B/ATAD3A deletion to Subjects

S2 and S3 (Fig. 2B and C). However, RNA analyses showed

that the second allele is more complicated than a simple

fusion gene. Unlike in Subjects S2 and S3, full length

ATAD3B cDNA could be amplified from S5 fibroblasts but

there was no cDNA sequence corresponding to the ATAD3B/

ATAD3A fusion transcripts (Fig. 3B and Supplementary Fig.

4D). Sequencing of ATAD3A cDNA suggested one allele had

at least one exon (exon 8) replaced by ATAD3B sequence,

resulting in a minimum of two missense variants in the

ATAD3A isoform 2 sequence (p.L269A and p.A271T,

Supplementary Fig. 5C and E). Transcriptome analysis of

Subjects S1a, S5 and control fibroblasts suggested the

ATAD3C gene is not expressed in fibroblasts and indicated

that ATAD3A and ATAD3B were among the most altered of

the full set of expressed genes in both Subjects S1a and S5

(Fig. 3D); qRT-PCR confirmed that ATAD3B, and to a lesser

extent ATAD3A, expression were decreased in Subject S5

(Fig. 3C). The precise genomic rearrangement on the second

ATAD3 allele has not been defined but the simplest explan-

ation that reconciles the DNA and RNA results is that both

the ATAD3A and ATAD3B genes on the second allele have

some sequence replaced by elements of the corresponding

gene via interlocus gene conversion; as documented for

other disease mutations, particularly between pairs of genes

with high homology (Casola et al., 2012; Dumont, 2015).

Immunoblotting of ATAD3 detected two species in con-

trol samples, as previously described (He et al., 2007), the

lower one being compatible with the 66 kDa ATAD3A iso-

form 2. Only one species of �65 kDa was detected in

Subjects’ S1a, S3 and S4 samples, at much lower abun-

dance than control cell lines. A more marked loss of the

lower band was seen in liver and muscle of Subject S1b

compared with fibroblasts (Fig. 3E). Thus, the protein data

are fully concordant with the genomic mapping that pre-

dicted an ATAD3A/ATAD3B fusion protein indistinguish-

able in size from ATAD3A. Moreover, because ATAD3A is

invariably more highly expressed than ATAD3B [see for

example, He et al. (2007) and Fig. 3D], the decrease in

expression can be attributed largely to the fusion gene

being under the control of the ATAD3B promoter. In

Subject S5, the band of the size expected for ATAD3B

(72.6 kDa) was barely detectable (Fig. 3E), the residual

signal can be explained by low expression of ATAD3B,

or expression of the 71.4 kDa ATAD3A isoform 1.

ATAD3A isoform 2 was less abundant than in controls,

but greatly exceeded that of the fatal neonatal subjects

(Fig. 3E), providing a ready explanation for the milder dis-

ease phenotype of Subject S5.

Mitochondrial DNA abnormalities
associated with ATAD3 deletions

Mitochondrial DNA abnormalities are a major cause of

mitochondrial dysfunction (Area-Gomez and Schon, 2014)

and ATAD3A and ATAD3B co-purify with mtDNA (He

et al., 2007). Therefore, we determined the abundance of

mtDNA in available tissues and cells; there were some dif-

ferences in mtDNA copy number in Subjects S1a, S1b and

S5 compared to controls (Supplementary Table 1), but not

sufficient to regard as mtDNA depletion. Previously, modu-

lating the expression of ATAD3 in aneuploid cells produced

only modest effects on mtDNA copy number but perturbed

mtDNA organization (He et al., 2007, 2012). Therefore, we

analysed the size and number of mtDNA foci in fibroblasts

from Subjects S1a and S5 (Supplementary Fig. 6), after anti-

DNA labelling. The number of ATAD3-deficient cells with

enlarged mtDNA foci was approximately three (Subject S5)

to seven times (Subject S1a) greater than that of a represen-

tative control (Fig. 4A). Assessment of the frequency distri-

bution of mtDNA foci sizes in the cells by particle point
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analysis showed that large mtDNA foci were significantly

more numerous in Subject S1a and S5 fibroblasts than

those of control cells (Fig. 4B), suggesting ATAD3 deficiency

causes localized mtDNA aggregation (impaired distribution).

Moreover, there was a substantial shift in signal from bin 3

(control) to bins 4 and 5 (Subjects S1a and S5), which is too

small a change to represent an increase in the number of

copies of mtDNA per foci, and more likely reflects altered

packing or topology of individual mtDNA molecules.

Consistent with this interpretation, PicoGreen� staining of

Figure 3 ATAD3 gene cluster deletions result in decreased expression of ATAD3A, and the loss of ATAD3B at the mRNA and

protein level. (A) ATAD3 deletions in relation to exon structure of full length ATAD3B and ATAD3A isoforms for Subjects S1a, S1b, S2 and S3.

(B) Full length ATAD3A and ATAD3B isoforms were amplified from control and subject cDNA prepared from fibroblasts grown � cycloheximide.

Primers OT441 and OT443 were used to amplify ATAD3A, while primers OT441 and OT445 were used to amplify ATAD3B. The ATAD3A product

amplified in S1a, S3 and S4 represents the fusion cDNA due to cross-hybridization of primer OT441. (C) The relative expression levels of ATAD3A

versus ATAD3B were determined by qRT-PCR from four controls and Subjects S1a, S3, S4 and S5. Results were normalized to HPRTexpression and

presented as percent of average control ATAD3A expression; n = 3, error = SEM. Two-way ANOVA comparing all controls and subjects showed

ATAD3B expression was significantly reduced in all subjects compared to individual controls (P5 0.0001), as was ATAD3A in S1a, S3 and S4

(P5 0.0001). For Subject S5, the reduction in ATAD3A was not significant in comparison to all controls. (D) Ranked gene expression list showing

the positions of ATAD3A and ATAD3B in Subjects S1a and S5 versus control. The dotted line represents the position of genes that are expressed

at the same level in subject and control samples; to the left, genes expressed more highly in the subjects; to the right, genes expressed less than

the control. Total number of genes 26 689. S5 fibroblasts manifested reduced expression of ATAD3B, with log2 fold change (FC) = �1.31; and to a

lesser extent the intact ATAD3A log2FC = �0.73. The transcripts of the ATAD3B/ATAD3A chimera of Subject S1a registered as decreased

expression of both original genes; ATAD3B, log2FC�3.0, ATAD3A, log2FC = �1.50. (E) ATAD3 proteins detected by immunoblotting using a

pan-specific antibody in tissues and fibroblasts from subjects, relative to controls. Porin or GAPDH was used as a loading control.
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the mtDNA (which is highly dependent on DNA topology;

He et al., 2007) showed that most foci of Subject S1a cells

appeared larger than those of the control (Fig. 4C). ATAD3

deficiency was also associated with reduced labelling of

mtDNA with BrdU in S5 fibroblasts, suggesting slow

mtDNA synthesis (Fig. 4D).

Pharmacological perturbation of
cholesterol metabolism induces
mtDNA clustering

The effects of ATAD3 deficiency on mtDNA organization

(Fig. 4A) could relate to its interactions with cholesterol

(see ‘Introduction’ section). Therefore, we investigated

whether disrupting cholesterol homeostasis exerted effects

on the mtDNA similar to those resulting from ATAD3

deficiency. Control human fibroblasts were exposed to

U18666A, an intracellular cholesterol transport inhibitor

(Sparrow et al., 1999); or the HMG-CoA reductase inhibi-

tor pravastatin, one of a class of drugs used to reduce

cholesterol synthesis in humans (Gould et al., 1998), or

soluble cholesterol. Treatment of human fibroblasts with

5 mM U18666A (Fig. 5A), or 5 mM pravastatin (Fig. 5B),

for 7 days led to an increase in the number of large

mtDNA foci. Cholesterol supplementation (5 mM for 5

days) produced an increase in the size of the majority of

mtDNA foci, but individual nucleoids were not enlarged to

Figure 4 ATAD3 deficiency is associated with mtDNA abnormalities. The DNA of human fibroblasts was stained with anti-DNA

antibody and the number of cells with enlarged mtDNAs was scored for cell lines C1, S1a and S5. (A) A minimum of 150 cells was counted for

each cell line (n = 4 independent experiments, error bars are 1 standard deviation from the mean). See Supplementary Fig. 6 for representative

images for Subject S5. (B) The signals of foci in the cytoplasm (mtDNA) plotted as frequency distribution after particle point analysis of a minimum

of 20 cells. To smooth the data, signals were sorted into 20 ‘bins’ based on intensity. Foci falling in bins 1–6 all correspond to one mtDNA

molecule based on detailed study of the images, including ones subjected to deconvolution analysis (Akman et al., 2016), and the fact that most

mtDNAs are organized as single copies (Kukat et al., 2011), with the variation across the range expected to be the result of differences in

condensation (packing) and efficiency of antibody access and coating. Many of the foci of bins 7–9 could be resolved to two or three separate or

overlapping smaller dots indicating they contained two or three mtDNA molecules, whereas larger foci in bins 10 and above contained more than

three copies of mtDNA. Very large mtDNA foci (bins4 11) were significantly more numerous in Subjects S1a (P5 0.0001) and S5 (P5 0.0001)

fibroblasts than controls. (C) PicoGreen� staining of mtDNA reveals larger foci in cells of S1a than those of controls. Representative images

showing the PicoGreen� stained structures in the cytoplasm (mtDNA). Nuclear DNA staining with PicoGreen� is highly variable (often it is

undetectable) (He et al., 2007) and so cannot serve as a reference. Microscope settings and image capture parameters were identical. PicoGreen�

staining was as previously described (Ashley et al., 2005). (D) BrdU incorporation into mtDNA detected by immunofluorescence. Single confocal

optical sections of C1 and S5 fibroblasts treated with 20mM BrdU for 8 h and with anti-BrdU antibody (green) and anti-ATAD3 antibody (red).
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the same extent as with U18666A or pravastatin treatment

(Fig. 5C). Therefore, increases or decreases in cholesterol

availability modify the organization of mtDNA in

human cells. This suggests that strict maintenance of the

cholesterol content of mitochondrial membranes in the

vicinity of the mtDNA is necessary to support mtDNA

segregation and distribution within the mitochondrial

network.

U18666A or pravastatin treatment of ATAD3-deficient

fibroblasts increased the number of cells with enlarged

mtDNA foci, maintaining or amplifying the distinction

from control cells (Fig. 5D). There were also marked effects

on the size of individual foci, particularly in Subject S1a

(Supplementary Fig. 7A and B). In contrast to these drugs,

cholesterol supplementation reduced the mtDNA differ-

ences between ATAD3-deficient and control fibroblasts

(Fig. 5D and Supplementary Fig. 7C).

The cholesterol trafficking disorder,
Niemann-Pick disease type C, is
associated with mtDNA aggregation

If changes in cholesterol and lipid metabolism were respon-

sible for the mtDNA phenotypes displayed by ATAD3-de-

ficient cells (Fig. 4), then mtDNA abnormalities should be

evident in genetic disorders of cholesterol metabolism such

as Niemann-Pick disease type C, caused by mutations in

the intracellular cholesterol transporters NPC1 (MIM

257220) or NPC2 (MIM 607625) (Roff et al., 1991).

Recently, mitochondrial distension has been reported in

cells of individuals with NPC1 mutations (Schultz et al.,

2016). Such swellings (or bulbs) within the mitochondrial

network have been associated with mtDNA clustering

(Ban-Ishihara et al., 2013; Dalla Rosa et al., 2014).

Figure 5 U186666A, pravastatin and cholesterol increase the size of mitochondrial nucleoids in human fibroblasts. The DNA of

control human fibroblasts was stained with anti-DNA antibody after treating cells for 7 days without or with 5mM U18666A (A), or pravastatin

(B); or for 5 days with 5 mM cholesterol (C). P-values for the difference between large mtDNA foci (bins4 8) of treated versus untreated cells

were P = 0.0116 (U18666A); P = 0.0011 (pravastatin); P = 0.0002 (cholesterol). The data are plotted as frequency distributions after particle point

analysis. Insets are representative images. (D) The proportion of fibroblasts with enlarged mtDNA foci, after treatment with U18666A,

pravastatin, or cholesterol, compared to untreated cells, based on a minimum count of 50 cells from each of three independent experiments,

error bars are 1 standard deviation from the mean. Fibroblasts of Subjects S1a and S5 carry deletions in the ATAD3 gene cluster. Data for the

‘untreated’ cells, derived from experiments carried out in parallel, are reproduced from Fig. 4A. Probability was determined using a one-way

ANOVA test (uncorrected Fisher’s LSD). *P5 0.05; **P5 0.01, ***P5 0.001.
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Analysis of the mitochondrial network in fibroblasts har-

bouring NPC1 mutations showed morphological changes

similar to those reported earlier (Schultz et al., 2016).

The distended mitochondria contained clusters of

mtDNAs, and nucleoid size was greater than control cells

(Fig. 6) implying that a genetic cholesterol trafficking defect

perturbs mtDNA organization and distribution.

ATAD3-deficient cells display
perturbed cholesterol and lipid
metabolism

Transcriptome analysis of Subjects S1a, S5 and control cells

provided extensive evidence that the ATAD3 deletions per-

turb cholesterol and lipid metabolism. The most positively

enriched pathway in Subject S5 cells was cholesterol bio-

genesis based on Meta-CoreTM software analysis

(Supplementary Fig. 8), and the endogenous metabolic net-

works distinguishing Subject S5 cells most from control

cells were linked to lipid metabolism (Supplementary Fig.

9A). Other factors of cholesterol metabolism significantly

differentially expressed (FDR50.05 and a log2FC4 2) in

Subject S5 were the endoplasmic reticulum membrane pro-

tein INSIG1, which plays a critical role in regulating

cholesterol concentrations in the cell; and CYP11A1,

which converts cholesterol to pregnenolone in the mito-

chondria, and has been linked previously to ATAD3

(Rone et al., 2012) (Fig. 7A). SREBF2, the master regulator

of cellular cholesterol synthesis (Horton et al., 2002), was

also significantly more highly expressed in cells from

Subject S5 versus the control (Fig. 7A), and an isoform of

SREBF2 was more abundant in Subjects’ S5 and S1a cells

at the protein level (Fig. 7B). Although altered cholesterol

metabolism was not as marked in Subject S1a’s samples,

lipid metabolism again dominated the endogenous meta-

bolic network analysis (Supplementary Fig. 8B), and key

rate-limiting enzymes for cholesterol biosynthesis were

among the most positively correlated genes of Subject

S1a’s cells (Fig. 7A). Substantial and significant changes

to two other factors involved in cholesterol homeostasis,

carboxylesterase 1 (CES1) (Quiroga et al., 2012; Ross

et al., 2014) and leptin (Hongo et al., 2009) were also

evident in S1a and S5 cells (Fig. 7A), with the former con-

firmed at the protein level (Fig. 7C). Moreover, unesterified

(free) cholesterol was significantly increased in S1a and S5

fibroblasts (Fig. 7D) and exceeded that of a case of NPC as

well as controls, after 72 h exposure to U18666A (Fig. 7E).

GSEA analysis (Subramanian et al., 2005) corroborated

the Meta-Core results, highlighting lipid metabolism and

cholesterol and sterol biosynthesis as altered in ATAD3-

deficient cells, especially those of Subject S5

(Supplementary Fig. 10). In addition, GSEA revealed that

highly significant decreases in the OXPHOS system in the

ATAD3 deletion cells (FDR q-value51 � 10�16 for

Subjects S1a and S5) correlated with disease severity

(Fig. 7F). Individual OXPHOS components tested were

slightly decreased at the protein level (Fig. 7G), and thus

were concordant with the GSEA.

Discussion
Defects in mitochondrial function have been linked to pon-

tocerebellar hypoplasia previously, particularly mutations

in the RARS2 tRNA synthetase gene (Edvardson et al.,

2007) and occasional cases with a mtDNA deletion

(Biancheri et al., 2011) or OXPHOS enzyme defect (as re-

ported for Subject S2; de Koning et al., 1999). We describe

four unrelated families in whom chimeric ATAD3B/

ATAD3A gene fusions result in congenital pontocerebellar

hypoplasia. A family with a similar deletion and clinical

presentation was also recently reported (Harel et al.,

2016). In a cohort of 169 cases of pontocerebellar hypo-

plasia, 106 were linked to mutations in four genes

(TSEN54, TSEN2, TSEN34 and RARS2) (Namavar

et al., 2011). The identification of five pontocerebellar

hypoplasia families with different ethnicities and

ATAD3B/ATAD3A gene fusions suggests ATAD3 defects

could underlie a significant portion of the remaining cases

lacking a molecular diagnosis, especially those with asso-

ciated cortical abnormalities.

Figure 6 Niemann-Pick type C disease is associated with

mtDNA disorganization. (A) Frequency distribution of mtDNA

foci size in fibroblasts from a control and two individuals with NPC1

defects. (B) Proportion of cells with mtDNA clusters, error bars

are 1 standard deviation from the mean. (C) Representative images.

Anti-DNA (green) and anti-TOM20 labelling of fibroblasts. Yellow

foci, and green foci bounded by red, are mtDNAs.
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Figure 7 Abnormal cholesterol homeostasis and reduced expression of OXPHOS factors associated with ATAD3 gene cluster

deletions. (A) Rank gene expression list showing the position of selected factors for Subjects S1a and S5 versus control (see also Supplementary

Figs 8–10 and Supplementary material). (B and C) Proteins from fibroblasts of controls and S1a and S5 were fractionated by SDS-PAGE and

probed with the indicated antibodies after blot transfer. There was no increase in the steady-state level of the larger isoforms of SREBF2 (located

in the cytoplasm, SREBF2-C) among the subject samples but a SCAP processed SREBF2 isoform, which translocates to the nucleus (SREBF2-N)

and resolves at �55 kDa, was increased in S1a and S5 samples (this particular species may be a phosphorylated form of SREBF2 (Krycer et al.,

2012); CES1 was greatly diminished. (D and E) Free cholesterol detected by filipin labelling of fibroblasts exposed to (D) no treatment, or

(E) 5 mM U18666A for 72 h. *P5 0.05, ns = not significant. (F) Gene set enrichment plots for OXPHOS in Subjects S1a and S5. Each vertical black

line represents an mRNA, with the most positively correlated to the left (in the red zone). Clustering at the negatively correlated end of the

spectrum (blue zone) indicates the pathway is repressed compared to the reference. Consistent changes across a gene set give sharp curves

(green lines) and S1a gave the sharper curve of the two. Moreover, for S1a OXPHOS was the third most negatively differentially expressed

pathway or process, whereas it was 17th for S5. These observations are consistent with greater OXPHOS impairment in S1a than S5. (G)

Immunoblots of respiratory chain components of complex IV (COX2) and complex I (NDUFB8). (H) Proposed arrangement of cholesterol in the

mitochondrial inner membrane, the mtDNA in particular is not to scale. (a) In normal conditions localized high concentrations of cholesterol
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The ATAD3 gene cluster is likely to have been generated

via consecutive gene duplication events and the extensive

regions of direct repeats predispose to non-allelic homolo-

gous recombination and an increased frequency of genomic

re-arrangements such as deletions and interlocus gene con-

version. The highly repetitive sequences can result in erro-

neous calling of copy number in SNP arrays due to a

paucity of unique SNP markers and cross hybridization

of these few markers. Similar issues complicate mapping

and detection of ATAD3 single nucleotide variants and

copy number changes by whole exome sequencing, where

standard pipelines do not routinely detect most copy

number variants. Indeed, SNP array and whole exome

sequencing of Subject S3 DNA in a diagnostic laboratory

were initially reported as normal. Following diagnosis of

Subject S1a, SNP array data for the 1p36.33 region from

over 50 000 individuals were reanalysed, flagging the likely

homozygous deletion in Subject S3.

Hence, the detection of pathogenic mutations in the

ATAD3 genes is compromised and re-interrogation of pre-

vious SNP or exome data for this region is warranted for

unsolved cases with relevant phenotypes. Homozygous de-

letions in the region can be identified from exome sequen-

cing by visual inspection of the aligned read data through

absence of coverage (Supplementary Fig. 11), indicating

that more specialized calling algorithms should be able to

recognize the abnormality in the future. Base level reso-

lution of the breakpoints will, however, in most cases re-

quire long read sequencing technology to overcome

homology and mapping issues.

Aberrant mtDNA organization and
cholesterol homeostasis in CNS
defects associated with ATAD3
deficiency

Neurological dysfunction and developmental impairment

are features of many mitochondrial disorders, but the

pathogenic mechanisms are poorly understood. The current

findings suggest that cholesterol could be a key factor in the

pathology linked to ATAD3 defects, a view supported by

the cerebellar dysfunction present in cholesterol-related gen-

etic diseases. Hypoplasia of the cerebellum is classically

associated with Smith-Lemli-Opitz syndrome (MIM

270400), a recessive disorder of cholesterol synthesis, and

cerebellar dysfunction is a feature of Niemann-Pick disease

Type C. On the other hand, the mtDNA abnormalities evi-

dent in Niemann-Pick disease Type C (Fig. 6) and ATAD3

deletion disorders (Fig. 4) suggest these could be the pri-

mary driver of the cerebellar pathologies.

Mitochondria also play an important role in steroidogen-

esis. Purkinje cells are the main sites of neurosteroid produc-

tion in the brain (Tsutsui and Yamazaki, 1995; Usui et al.,

1995) and progesterone and its metabolite, allopregnanolone,

are high in neonatal life, when cerebellar circuits form in

mammals to promote dendritic growth, spine formation

and maintenance of the Purkinje cells (Sakamoto et al.,

2002). Hence, a shortage of the products of cholesterol pro-

vides a plausible alternative explanation for the cerebellar

pathology accompanying the ATAD3 deletions.

In contrast to the fatal infantile ATAD3B/ATAD3A gene

fusion defects, recessive and de novo dominant ATAD3A

missense mutations are associated with milder forms of

cerebellar dysfunction and a broader range of neurological

and multisystem disorders (Harel et al., 2016; Cooper

et al., 2017). This suggests that ATAD3A missense muta-

tions result in loss of a subset of ATAD3’s functions, or

cause it to malfunction, rather than the severe protein de-

ficiency caused by biallelic deletions in the ATAD3A locus.

Subject S5 differs from other reported individuals with

ATAD3 defects in having biallelic genomic rearrangements

of the ATAD3 locus but with a phenotype more similar to

that caused by ATAD3A missense mutations. This presum-

ably results from the complicated rearrangement in one

allele allowing expression of one wild-type ATAD3A

allele but affecting expression of both ATAD3B alleles.

Mitochondria, ATAD3 and
cholesterol homeostasis

The perturbations of cholesterol homeostasis associated

with ATAD3 deficiency suggest mitochondria are a key

organelle affecting cholesterol metabolism and that

ATAD3 regulates the supply of cholesterol to the mito-

chondria. That the mitochondrial signal for cholesterol bio-

synthesis precipitated by ATAD3 deficiency overrides those

of the remainder of the cell, where there is no apparent

shortage of cholesterol, speaks to the importance of main-

taining mitochondrial cholesterol levels within strict limits.

The impact on the mtDNA of perturbed cholesterol metab-

olism (Figs 4–6) suggests insertion of the sterol in the inner

mitochondrial membrane is important for mtDNA replica-

tion and segregation, which occur at mitochondrial–endo-

plasmic reticulum junctions (Murley et al., 2013; Lewis

et al., 2016). Given the central role of the endoplasmic

reticulum in cholesterol metabolism (Iaea and Maxfield,

Figure 7 Continued

impart rigidity to the membrane for optimal organization and segregation of the mtDNA, whereas other regions require greater flexibility to form

the highly invaginated membranes characteristic of the inner mitochondrial membrane. (b) If cholesterol is scarce there is insufficient sterol to

permit mtDNA segregation. (c) Alternatively, if cholesterol is present in normal amounts but dispersed, both rigidity and flexibility are suboptimal;

hence, a key role of ATAD3 may be to concentrate cholesterol where the mtDNA is located. Such membrane abnormalities (b or c) could cause

the increase in mitochondrial turnover (mitophagy) reported for other ATAD3 mutants (Harel et al., 2016).
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2015), such contact sites are the obvious route for choles-

terol channelling to mitochondria, and the ATAD3 asso-

ciated with the mtDNA and the inner mitochondrial

membrane (He et al., 2007) is ideally placed to ensure

cholesterol is concentrated here. Low or dispersed choles-

terol in the inner mitochondrial membrane would be ex-

pected to alter its rigidity and thereby impede mtDNA

segregation (Fig. 7H).

Cholesterol and mitochondrial integrity have both been

linked to neurodegeneration (Karasinska and Hayden,

2011). Hitherto these were seen as distinct ideas, which

can now be accommodated in a single hypothesis, where

defects in either cholesterol metabolism or mitochondrial

dysfunction will adversely impact the other. It will therefore

be of considerable interest to learn how mtDNA organiza-

tion and maintenance operate in a broad range of neuro-

degenerative disorders.
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