317 research outputs found

    Gene expression drives the evolution of dominance.

    Get PDF
    Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels

    DNA sense-and-respond protein modules for mammalian cells

    Get PDF
    We generated synthetic protein components that can detect specific DNA sequences and subsequently trigger a desired intracellular response. These modular sensors exploit the programmability of zinc-finger DNA recognition to drive the intein-mediated splicing of an artificial trans-activator that signals to a genetic circuit containing a given reporter or response gene. We used the sensors to mediate sequence recognition−induced apoptosis as well as to detect and report a viral infection. This work establishes a synthetic biology framework for endowing mammalian cells with sentinel capabilities, which provides a programmable means to cull infected cells. It may also be used to identify positively transduced or transfected cells, isolate recipients of intentional genomic edits and increase the repertoire of inducible parts in synthetic biology.United States. Defense Advanced Research Projects Agency (DARPA-BAA-11-23)Defense Threat Reduction Agency (DTRA) (HDTRA1-14-1-0006)United States. Air Force Office of Scientific Research (FA9550-14-1-0060

    Haplotype differences for copy number variants in the 22q11.23 region among human populations: a pigmentation-based model for selective pressure.

    Get PDF
    Two gene clusters are tightly linked in a narrow region of chromosome 22q11.23: the macrophage migration inhibitory factor (MIF) gene family and the glutathione S-transferase theta class. Within 120 kb in this region, two 30-kb deletions reach high frequencies in human populations. This gives rise to four haplotypic arrangements, which modulate the number of genes in both families. The variable patterns of linkage disequilibrium (LD) between these copy number variants (CNVs) in diverse human populations remain poorly understood. We analyzed 2469 individuals belonging to 27 human populations with different ethnic origins. Then we correlated the genetic variability of 22q11.23 CNVs with environmental variables. We confirmed an increasing strength of LD from Africa to Asia and to Europe. Further, we highlighted strongly significant correlations between the frequency of one of the haplotypes and pigmentation-related variables: skin color (R2=0.675, P<0.001), distance from the equator (R2=0.454, P<0.001), UVA radiation (R2=0.439, P<0.001), and UVB radiation (R2=0.313, P=0.002). The fact that all MIF-related genes are retained on this haplotype and the evidences gleaned from experimental systems seem to agree with the role of MIF-related genes in melanogenesis. As such, we propose a model that explains the geographic and ethnic distribution of 22q11.23 CNVs among human populations, assuming that MIF-related gene dosage could be associated with adaptation to low UV radiatio

    Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring

    Get PDF
    Over the last 2 decades, a large number of neurophysiological and neuroimaging studies of patients with schizophrenia have furnished in vivo evidence for dysconnectivity, ie, abnormal functional integration of brain processes. While the evidence for dysconnectivity in schizophrenia is strong, its etiology, pathophysiological mechanisms, and significance for clinical symptoms are unclear. First, dysconnectivity could result from aberrant wiring of connections during development, from aberrant synaptic plasticity, or from both. Second, it is not clear how schizophrenic symptoms can be understood mechanistically as a consequence of dysconnectivity. Third, if dysconnectivity is the primary pathophysiology, and not just an epiphenomenon, then it should provide a mechanistic explanation for known empirical facts about schizophrenia. This article addresses these 3 issues in the framework of the dysconnection hypothesis. This theory postulates that the core pathology in schizophrenia resides in aberrant N-methyl-D-aspartate receptor (NMDAR)–mediated synaptic plasticity due to abnormal regulation of NMDARs by neuromodulatory transmitters like dopamine, serotonin, or acetylcholine. We argue that this neurobiological mechanism can explain failures of self-monitoring, leading to a mechanistic explanation for first-rank symptoms as pathognomonic features of schizophrenia, and may provide a basis for future diagnostic classifications with physiologically defined patient subgroups. Finally, we test the explanatory power of our theory against a list of empirical facts about schizophrenia

    Modular construction of mammalian gene circuits using TALE transcriptional repressors

    Get PDF
    An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator–like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches using feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation.National Institutes of Health (U.S.) (Grant 5R01CA155320-04)National Institutes of Health (U.S.) (Grant P50GM098792)National Institutes of Health (U.S.) (Grant 1R01CA173712-01

    Principles of genetic circuit design

    Get PDF
    Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552

    Both Positive and Negative Selection Pressures Contribute to the Polymorphism Pattern of the Duplicated Human CYP21A2 Gene.

    Get PDF
    The human steroid 21-hydroxylase gene (CYP21A2) participates in cortisol and aldosterone biosynthesis, and resides together with its paralogous (duplicated) pseudogene in a multiallelic copy number variation (CNV), called RCCX CNV. Concerted evolution caused by non-allelic gene conversion has been described in great ape CYP21 genes, and the same conversion activity is responsible for a serious genetic disorder of CYP21A2, congenital adrenal hyperplasia (CAH). In the current study, 33 CYP21A2 haplotype variants encoding 6 protein variants were determined from a European population. CYP21A2 was shown to be one of the most diverse human genes (HHe=0.949), but the diversity of intron 2 was greater still. Contrary to previous findings, the evolution of intron 2 did not follow concerted evolution, although the remaining part of the gene did. Fixed sites (different fixed alleles of sites in human CYP21 paralogues) significantly accumulated in intron 2, indicating that the excess of fixed sites was connected to the lack of effective non-allelic conversion and concerted evolution. Furthermore, positive selection was presumably focused on intron 2, and possibly associated with the previous genetic features. However, the positive selection detected by several neutrality tests was discerned along the whole gene. In addition, the clear signature of negative selection was observed in the coding sequence. The maintenance of the CYP21 enzyme function is critical, and could lead to negative selection, whereas the presumed gene regulation altering steroid hormone levels via intron 2 might help fast adaptation, which broadly characterizes the genes of human CNVs responding to the environment

    Lab Retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles

    Get PDF
    BACKGROUND: Technological advances have enabled the analysis of very small amounts of DNA in forensic cases. However, the DNA profiles from such evidence are frequently incomplete and can contain contributions from multiple individuals. The complexity of such samples confounds the assessment of the statistical weight of such evidence. One approach to account for this uncertainty is to use a likelihood ratio framework to compare the probability of the evidence profile under different scenarios. While researchers favor the likelihood ratio framework, few open-source software solutions with a graphical user interface implementing these calculations are available for practicing forensic scientists. RESULTS: To address this need, we developed Lab Retriever, an open-source, freely available program that forensic scientists can use to calculate likelihood ratios for complex DNA profiles. Lab Retriever adds a graphical user interface, written primarily in JavaScript, on top of a C++ implementation of the previously published R code of Balding. We redesigned parts of the original Balding algorithm to improve computational speed. In addition to incorporating a probability of allelic drop-out and other critical parameters, Lab Retriever computes likelihood ratios for hypotheses that can include up to four unknown contributors to a mixed sample. These computations are completed nearly instantaneously on a modern PC or Mac computer. CONCLUSIONS: Lab Retriever provides a practical software solution to forensic scientists who wish to assess the statistical weight of evidence for complex DNA profiles. Executable versions of the program are freely available for Mac OSX and Windows operating systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0740-8) contains supplementary material, which is available to authorized users

    FTO Gene Associated Fatness in Relation to Body Fat Distribution and Metabolic Traits throughout a Broad Range of Fatness

    Get PDF
    A common single nucleotide polymorphism (SNP) of FTO (rs9939609, T/A) is associated with total body fatness. We investigated the association of this SNP with abdominal and peripheral fatness and obesity-related metabolic traits in middle-aged men through a broad range of fatness present already in adolescence.Obese young Danish men (n = 753, BMI > or = 31.0 kg/m(2)) and a randomly selected group (n = 879) from the same population were examined in three surveys (mean age 35, 46 and 49 years, respectively). The traits included anthropometrics, body composition, oral glucose tolerance test, blood lipids, blood pressure, fibrinogen and aspartate aminotransferase. Logistic regression analysis was used to assess the age-adjusted association between the phenotypes and the odds ratios for the FTO rs9939609 (TT and TA genotype versus the AA genotype), for anthropometrics and body composition estimated per unit z-score. BMI was strongly associated with the AA genotype in all three surveys: OR = 1.17, p = 1.1*10(-6), OR = 1.20, p = 1.7*10(-7), OR = 1.17, p = 3.4*10(-3), respectively. Fat body mass index was also associated with the AA genotype (OR = 1.21, p = 4.6*10(-7) and OR = 1.21, p = 1.0*10(-3)). Increased abdominal fatness was associated with the AA genotype when measured as waist circumference (OR = 1.21, p = 2.2*10(-6) and OR = 1.19, p = 5.9*10(-3)), sagittal abdominal diameter (OR = 1.17, p = 1.3*10(-4) and OR = 1.18, p = 0.011) and intra-abdominal adipose tissue (OR = 1.21, p = 0.005). Increased peripheral fatness measured as hip circumference (OR = 1.19, p = 1.3*10(-5) and OR = 1.18, p = 0.004) and lower body fat mass (OR = 1.26, p = 0.002) was associated with the AA genotype. The AA genotype was significantly associated with decreased Stumvoll insulin sensitivity index (OR = 0.93, p = 0.02) and with decreased non-fasting plasma HDL-cholesterol (OR = 0.57, p = 0.037), but not with any other of the metabolic traits. However, all significant results for both body fat distribution and metabolic traits were explained by a mediating effect of total fat mass.The association of the examined FTO SNP to general fatness throughout the range of fatness was confirmed, and this association explains the relation between the SNP and body fat distribution and decreased insulin sensitivity and HDL-cholesterol. The SNP was not significantly associated with other metabolic traits suggesting that they are not derived from the general accumulation of body fat
    corecore