5,025 research outputs found
The role of high growth temperature GaAs spacer layers in 1.3-/spl mu/m In(Ga)As quantum-dot lasers
We investigate the mechanisms by which high growth temperature spacer layers (HGTSLs) reduce the threshold current of 1.3-/spl mu/m emitting multilayer quantum-dot lasers. Measured optical loss and gain spectra are used to characterize samples that are nominally identical except for the HGTSL. We find that the use of the HGTSL leads to the internal optical mode loss being reduced from 15 /spl plusmn/ 2 to 3.5 /spl plusmn/ 2 cm/sup -1/, better defined absorption features, and more absorption at the ground state resulting from reduced inhomogenous broadening and a greater dot density. These characteristics, together with a reduced defect density, lead to greater modal gain at a given current density
Characterization of soil heavy metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning
Ongoing industrialization has resulted in an accumulation of metals like Cd, Cu, Cr, Ni, Zn, and Pb in paddy fields across Southeast Asia. Risks of metals in soils depend on soil properties and the availability of metals in soil. At present, however, limited information is available on how to measure or predict the directly available fraction of metals in paddy soils. Here, the distribution of Cd, Cu, Cr, Ni, Zn, and Pb in 19 paddy fields among the total, reactive, and directly available pools was measured using recently developed concepts for aerated soils. Solid-solution partitioning models have been derived to predict the directly available metal pool. Such models are proven to be useful for risk assessment and to derive soil quality standards for aerated soils. Soil samples (0-25 cm) were taken from 19 paddy fields from five different communities in Taiwan in 2005 and 2006. Each field was subdivided into 60 to 108 plots resulting in a database of approximately 3,200 individual soil samples. Total (Aqua Regia (AR)), reactive (0.43 M HNO3, 0.1 M HCl, and 0.05 M EDTA), and directly available metal pools (0.01 M CaCl2) were determined. Solid-solution partitioning models were derived by multiple linear regressions using an extended Freundlich equation using the reactive metal pool, pH, and the cation exchange capacity (CEC). The influence of Zn on metal partitioning and differences between both sampling events (May/November) were evaluated. Total metals contents range from background levels to levels in excess of current soil quality standards for arable land. Between 3% (Cr) and 30% (Cd) of all samples exceed present soil quality standards based on extraction with AR. Total metal levels decreased with an increasing distance from the irrigation water inlet. The reactive metal pool relative to the total metal content is increased in the order C
PHP61 The Financial Impacts of Pharmacist Intervention in Inpatient Department of a Local Hospital in Taiwan
Morphometric analysis of S. mortenseni. (DOC 44Â kb
Disjoint Covers in Replicated Heterogeneous Arrays
Reconfigurable chips are fabricated with redundant elements that can be used to replace the faulty elements. The fault cover problem consists of finding an assignment of redundant elements to the faulty elements such that all of the faults are repaired. In reconfigurable chips that consist of arrays of elements, redundant elements are configured as spare rows and spare columns.
This paper considers the problem in which a chip contains several replicates of a heterogeneous array, one or more sets of spare rows, and one or more sets of spare columns. Each set of spare rows is identical to the set of rows in the array, and each set of spare columns is identical to the set of columns in the array. Specifically, an ith spare row can only be used to replace an ith row of an array, and similarly with spare columns. Repairing the chip reduces to finding a cover for the faults in each of the arrays. These covers must be disjoint; that is, a particular spare row or spare column can be used in the cover of at most one array. Results are presented for three fault cover problems that arise under these conditions
Induced CMB quadrupole from pointing offsets
Recent claims in the literature have suggested that the {\it WMAP} quadrupole
is not primordial in origin, and arises from an aliasing of the much larger
dipole field because of incorrect satellite pointing. We attempt to reproduce
this result and delineate the key physics leading to the effect. We find that,
even if real, the induced quadrupole would be smaller than claimed. We discuss
reasons why the {\it WMAP} data are unlikely to suffer from this particular
systematic effect, including the implications for observations of point
sources. Given this evidence against the reality of the effect, the similarity
between the pointing-offset-induced signal and the actual quadrupole then
appears to be quite puzzling. However, we find that the effect arises from a
convolution between the gradient of the dipole field and anisotropic coverage
of the scan direction at each pixel. There is something of a directional
conspiracy here -- the dipole signal lies close to the Ecliptic Plane, and its
direction, together with the {\it WMAP} scan strategy, results in a strong
coupling to the component in Ecliptic co-ordinates. The dominant
strength of this component in the measured quadrupole suggests that one should
exercise increased caution in interpreting its estimated amplitude. The {\it
Planck} satellite has a different scan strategy which does not so directly
couple the dipole and quadrupole in this way and will soon provide an
independent measurement.Comment: 8 pages, 4 figure
Anterior Hippocampus and Goal-Directed Spatial Decision Making
Contains fulltext :
115487.pdf (publisher's version ) (Open Access
Effect of Tensor Correlations on Gamow-Teller States in 90Zr and 208Pb
The tensor terms of the Skyrme effective interaction are included in the
self-consistent Hartree-Fock plus Random Phase Approximation (HF+RPA) model.
The Gamow-Teller (GT) strength function of 90Zr and 208Pb are calculated with
and without the tensor terms. The main peaks are moved downwards by about 2 MeV
when including the tensor contribution. About 10% of the non-energy weighted
sum rule is shifted to the excitation energy region above 30 MeV by the RPA
tensor correlations. The contribution of the tensor terms to the energy
weighted sum rule is given analytically, and compared to the outcome of RPA.Comment: 13 pages, 2 figures,2 table
Destruction of long-range antiferromagnetic order by hole doping
We study the renormalization of the staggered magnetization of a
two-dimensional antiferromagnet as a function of hole doping, in the framework
of the t-J model. It is shown that the motion of holes generates decay of spin
waves into ''particle-hole'' pairs, which causes the destruction of the
long-range magnetic order at a small hole concentration. This effect is mainly
determined by the coherent motion of holes. The value obtained for the critical
hole concentration, of a few percent, is consistent with experimental data for
the doped copper oxide high-Tc superconductors.Comment: 12 pages, 2 figure
Topological Phase Transition and Electrically Tunable Diamagnetism in Silicene
Silicene is a monolayer of silicon atoms forming a honeycomb lattice. The
lattice is actually made of two sublattices with a tiny separation. Silicene is
a topological insulator, which is characterized by a full insulating gap in the
bulk and helical gapless edges. It undergoes a phase transition from a
topological insulator to a band insulator by applying external electric field.
Analyzing the spin Chern number based on the effective Dirac theory, we find
their origin to be a pseudospin meron in the momentum space. The peudospin
degree of freedom arises from the two-sublattice structure. Our analysis makes
clear the mechanism how a phase transition occurs from a topological insulator
to a band insulator under increasing electric field. We propose a method to
determine the critical electric field with the aid of diamagnetism of silicene.
Diamagnetism is tunable by the external electric field, and exhibits a singular
behaviour at the critical electric field. Our result is important also from the
viewpoint of cross correlation between electric field and magnetism. Our
finding will be important for future electro-magnetic correlated devices.Comment: 4 pages,5 figure
- …
