13 research outputs found

    Illinois Brick: The Death Knell of Ultimate Consumer and Antitrust Suits

    Get PDF

    The role of stress and fluid saturation on the acoustic response of fractured rock

    Get PDF
    Standard rock physics models are formulated to describe the behavior of porous sedimentary reservoirs, with clean sandstones being the archetypal system; however, many situations demand geophysical monitoring of rocks with significantly different structures, such as low porosity, fractured reservoirs. Conventional models also suggest that these “stiff” reservoirs can be challenging to monitor seismically due to small fluid substitution effects, but the presence of fractures leads to stress dependence which may be leveraged for remote monitoring purposes. Using samples from the Duperow Formation (dolostone) obtained from the Danielson test well in Kevin Dome, MT, we conducted ultrasonic and multi-scale structural (profilometry, synchrotron micro-tomography, pressure sensitive film) measurements on naturally fractured core in order to characterize the effects of fluid substitution and effective stress on the acoustic response of fractured reservoir rock with a focus in particular on the textural and seismic characteristics of natural fractures. We find that changes in effective stress can yield changes in velocity of up to 20% and changes in attenuation up to 200%. Measured fluid substitution effects are resolvable, but stress effects dominate. These measurements provide insight into the physical processes controlling acoustic response of fractured rocks in general and can also be used to inform monitoring efforts in fractured reservoirs

    Experimental evidence of reaction-induced fracturing during olivine carbonation.:Fracturing during olivine carbonation

    Get PDF
    Mineral carbonation, a process that binds CO2 in the form of carbonates by silicate weathering, is widespread on the Earth's surface. Because of the abundance of silicate rocks and the permanence of the carbonated solids, sequestering CO2 via mineral carbonation has generated lots of interests. However, it is unclear how the fluid-rock reaction proceeds to completion in spite of an increasing solid volume. We conducted a mineral carbonation experiment in which a sintered olivine aggregate reacted with a sodium bicarbonate solution at reservoir conditions. Time-resolved synchrotron X-ray microtomographic images show cracks in polygonal patterns arising in the surface layers and propagating into the interior of the olivine aggregate. The nanotomography data reveal that the incipient cracks intersect at right angles. We infer that stretching due to nonuniform volume expansion generates polygonal cracking of the surfaces. Our data shed new lights on the processes that control hydration and carbonation of peridotite

    An assessment of the cost-effectiveness of magnetic resonance, including diffusion-weighted imaging in patients with transient ischaemic attack and minor stroke : a systematic review, meta-analysis and economic evaluation

    Get PDF
    Erratum issued September 2015 Erratum DOI: 10.3310/hta18270-c201509Peer reviewedPublisher PD

    An assessment of the cost-effectiveness of magnetic resonance, including diffusion-weighted imaging, in patients with transient ischaemic attack and minor stroke: a systematic review, meta-analysis and economic evaluation

    Full text link

    Evolution of strength and physical properties of ultramafic and carbonate rocks under hydrothermal conditions

    Get PDF
    Interaction of rocks with fluids can significantly change mineral assemblage and structure. This so-called hydrothermal alteration is ubiquitous in the Earth’s crust. Though the behavior of hydrothermally altered rocks can have planet-scale consequences, such as facilitating oceanic spreading along slow ridge segments and recycling volatiles into the mantle at subduction zones, the mechanisms involved in the hydrothermal alteration are often microscopic. Fluid-rock interactions take place where the fluid and rock meet. Fluid distribution, flux rate and reactive surface area control the efficiency and extent of hydrothermal alteration. Fluid-rock interactions, such as dissolution, precipitation and fluid mediated fracture and frictional sliding lead to changes in porosity and pore structure that feed back into the hydraulic and mechanical behavior of the bulk rock. Examining the nature of this highly coupled system involves coordinating observations of the mineralogy and structure of naturally altered rocks and laboratory investigation of the fine scale mechanisms of transformation under controlled conditions. In this study, I focus on fluid-rock interactions involving two common lithologies, carbonates and ultramafics, in order to elucidate the coupling between mechanical, hydraulic and chemical processes in these rocks. I perform constant strain-rate triaxial deformation and constant-stress creep tests on several suites of samples while monitoring the evolution of sample strain, permeability and physical properties. Subsequent microstructures are analyzed using optical and scanning electron microscopy. This work yields laboratory-based constraints on the extent and mechanisms of water weakening in carbonates and carbonation reactions in ultramafic rocks. I find that inundation with pore fluid thereby reducing permeability. This effect is sensitive to pore fluid saturation with respect to calcium carbonate. Fluid inundation weakens dunites as well. The addition of carbon dioxide to pore fluid enhances compaction and partial recovery of strength compared to pure water samples. Enhanced compaction in CO2-rich fluid samples is not accompanied by enhanced permeability reduction. Analysis of sample microstructures indicates that precipitation of carbonates along fracture surfaces is responsible for the partial restrengthening and channelized dissolution of olivine is responsible for permeability maintenance
    corecore