53 research outputs found

    MAGIC-2D simulations of high efficiency hollow beam klystrons

    Get PDF
    Results from MAGIC-2D simulations of hollow beam, 800 MHz klystrons, with efficiencies on the order of 85% are presented. Such tubes employ the core oscillation method of electron bunching, which allows for most electrons in the beam to be contained within the bunch at the output cavity. By moving towards hollow beam geometries, the bunch at the output cavity presents a favourable phase and spatial profile for energy extraction, and thus, the overall tube efficiency can be maximised

    Numerical design of high efficiency klystrons using core oscillation bunching

    Get PDF
    1-D and 2-D numerical simulations of 800 MHz klystrons with efficiencies approaching 90% are presented. While traditional klystrons employ monotonic electron bunching along their lengths, the core oscillation method allows for an improved bunch shape at the output cavity, facilitating maximum energy extraction. The core oscillation bunching scheme proves an attractive method for attaining high efficiency operation in klystrons, which can be used to reduce the power consumption of future particle accelerators

    W-band klystron upconverter driven by pseudospark-sourced electron beam

    Get PDF
    In this paper, a three-cavity klystron upconverter operating at W-band is presented. It is predicted to generate 40 W when driven by a 30 kV, 0.2 A electron beam. Pseudospark-sourced electron beam after post-acceleration was proposed to be used with the klystron upconverter because it has the advantage of low energy spread, high current density, and no need of any external guiding magnetic field

    W-band klystron upconverter driven by pseudospark-sourced electron beam

    Get PDF
    In this paper, a three-cavity klystron upconverter operating at W-band is presented. It is predicted to generate 40 W when driven by a 30 kV, 0.2 A electron beam. Pseudospark-sourced electron beam after post-acceleration was proposed to be used with the klystron upconverter because it has the advantage of low energy spread, high current density, and no need of any external guiding magnetic field

    Analytical and Numerical Simulation of Multipactor within a Helical Resonant Filter

    Get PDF
    Multipactor analysis of a helical resonant filter has been performed using CST Particle Studio and analytically using a 1-D particle tracking code, based on the Runge-Kutta-Nystrom method. A comparison of results is presented

    Particle-in-cell simulation of second and third harmonic cavity klystron

    Get PDF
    This paper outlines the results obtained from Magic software for the CSM_23 (Core Stabilization Method) klystron. This klystron implements the use of a second and third harmonic klystron to increase the efficiency. From the PIC simulation an efficiency of 78.1% was achieved

    MAGIC2-D simulations of high efficiency klystrons using the core oscillation method

    Get PDF
    Klystrons employing traditional monotonic electron bunching are capable of efficiencies up to ~70%. The use of the core oscillation method (COM) of electron bunching has predicted a significant improvement in efficiency towards 90%. Here, we document refinements on previously presented geometries, with PIC simulations predicting efficiencies up to 85%

    Characterization of homologous sphingosine-1-phosphate lyase isoforms in the bacterial pathogen Burkholderia pseudomallei

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Sphingolipids (SLs) are ubiquitous elements in eukaryotic membranes and are also found in some bacterial and viral species. As well as playing an integral structural role, SLs also act as potent signalling molecules involved in numerous cellular pathways and have been linked to many human diseases. A central SL signalling molecule is sphingosine-1-phosphate (S1P) whose breakdown is catalysed by sphingosine-1-phosphate lyase (S1PL), a pyridoxal 5 '-phosphate (PLP) dependent enzyme that catalyses the cleavage of S1P to (2E)-hexadecenal (2E-HEX) and phosphoethanolamine (PE). Here we show the pathogenic bacterium Burkholderia pseudomallei K96243 encodes two homologous proteins (S1PL2021 and S1PL2025) that display moderate sequence identity to known eukaryotic and prokaryotic S1PLs. Using an established mass spectrometry-based methodology we show that recombinant S1PL2021 is catalytically active. Using recombinant human fatty aldehyde dehydrogenase (FALDH) we developed a spectrophotometric, enzyme-coupled assay to detect 2E-HEX formation and measure the kinetic constants of the two B. pseudomallei S1PL isoforms. Furthermore, we determined the x-ray crystal structure of the PLP-bound form of S1PL2021 at 2.1 Ã… resolution revealing the enzyme displays a conserved structural fold and active site architecture comparable with known S1PLs. The combined data suggest that B. pseudomallei has the potential to degrade host SLs in a S1PL-dependent manner.The authors thanks the following for funding: The Biotechnology and Biological Sciences Research Council (BBSRC) for an EastBio Doctoral Training Programme PhD studentship award to C McLean (BB/J01446X/1) and a grant awarded to DJ Campopiano (BB/I013687/1) that supported J Lowther and DJ Clarke. R Custodio was supported by the Defence Science and Technology Laboratory under contract DSTLX-1000060221 (WP1). We thank the staff of the Diamond Light Source, UK for help with data collection. The authors thank Prof. John RW Govan (University of Edinburgh) for his suggestions regarding Burkholderia strains and enthusiastic support of this work. We also thanks Dr. Kevin Ralston for help in the synthesis of 2E-HEX. The data associated with this paper is available to download (http://dx.doi.org/10.7488/ds/1412)

    SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues.

    Get PDF
    There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection
    • …
    corecore