20 research outputs found

    Time series classification with ensembles of elastic distance measures

    Get PDF
    Several alternative distance measures for comparing time series have recently been proposed and evaluated on time series classification (TSC) problems. These include variants of dynamic time warping (DTW), such as weighted and derivative DTW, and edit distance-based measures, including longest common subsequence, edit distance with real penalty, time warp with edit, and move–split–merge. These measures have the common characteristic that they operate in the time domain and compensate for potential localised misalignment through some elastic adjustment. Our aim is to experimentally test two hypotheses related to these distance measures. Firstly, we test whether there is any significant difference in accuracy for TSC problems between nearest neighbour classifiers using these distance measures. Secondly, we test whether combining these elastic distance measures through simple ensemble schemes gives significantly better accuracy. We test these hypotheses by carrying out one of the largest experimental studies ever conducted into time series classification. Our first key finding is that there is no significant difference between the elastic distance measures in terms of classification accuracy on our data sets. Our second finding, and the major contribution of this work, is to define an ensemble classifier that significantly outperforms the individual classifiers. We also demonstrate that the ensemble is more accurate than approaches not based in the time domain. Nearly all TSC papers in the data mining literature cite DTW (with warping window set through cross validation) as the benchmark for comparison. We believe that our ensemble is the first ever classifier to significantly outperform DTW and as such raises the bar for future work in this area

    Classification of time series by shapelet transformation

    Get PDF
    Time-series classification (TSC) problems present a specific challenge for classification algorithms: how to measure similarity between series. A \emph{shapelet} is a time-series subsequence that allows for TSC based on local, phase-independent similarity in shape. Shapelet-based classification uses the similarity between a shapelet and a series as a discriminatory feature. One benefit of the shapelet approach is that shapelets are comprehensible, and can offer insight into the problem domain. The original shapelet-based classifier embeds the shapelet-discovery algorithm in a decision tree, and uses information gain to assess the quality of candidates, finding a new shapelet at each node of the tree through an enumerative search. Subsequent research has focused mainly on techniques to speed up the search. We examine how best to use the shapelet primitive to construct classifiers. We propose a single-scan shapelet algorithm that finds the best kk shapelets, which are used to produce a transformed dataset, where each of the kk features represent the distance between a time series and a shapelet. The primary advantages over the embedded approach are that the transformed data can be used in conjunction with any classifier, and that there is no recursive search for shapelets. We demonstrate that the transformed data, in conjunction with more complex classifiers, gives greater accuracy than the embedded shapelet tree. We also evaluate three similarity measures that produce equivalent results to information gain in less time. Finally, we show that by conducting post-transform clustering of shapelets, we can enhance the interpretability of the transformed data. We conduct our experiments on 29 datasets: 17 from the UCR repository, and 12 we provide ourselve

    The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances

    Get PDF
    In the last five years there have been a large number of new time series classification algorithms proposed in the literature. These algorithms have been evaluated on subsets of the 47 data sets in the University of California, Riverside time series classification archive. The archive has recently been expanded to 85 data sets, over half of which have been donated by researchers at the University of East Anglia. Aspects of previous evaluations have made comparisons between algorithms difficult. For example, several different programming languages have been used, experiments involved a single train/test split and some used normalised data whilst others did not. The relaunch of the archive provides a timely opportunity to thoroughly evaluate algorithms on a larger number of datasets. We have implemented 18 recently proposed algorithms in a common Java framework and compared them against two standard benchmark classifiers (and each other) by performing 100 resampling experiments on each of the 85 datasets. We use these results to test several hypotheses relating to whether the algorithms are significantly more accurate than the benchmarks and each other. Our results indicate that only 9 of these algorithms are significantly more accurate than both benchmarks and that one classifier, the Collective of Transformation Ensembles, is significantly more accurate than all of the others. All of our experiments and results are reproducible: we release all of our code, results and experimental details and we hope these experiments form the basis for more rigorous testing of new algorithms in the future

    Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indoor-based anti-vector interventions remain the preferred means of reducing risk of malaria transmission in malaria endemic areas around the world. Despite demonstrated success in reducing human-mosquito interactions, these methods are effective solely against endophilic vectors. It may be that outdoor locations serve as an important venue of host seeking by <it>Anopheles gambiae </it>sensu lato (s.l.) mosquitoes where indoor vector suppression measures are employed. This paper describes the host seeking activity of anopheline mosquito vectors in the Punta Europa region of Bioko Island, Equatorial Guinea. In this area, <it>An. gambiae </it>sensu stricto (s.s.) is the primary malaria vector. The goal of the paper is to evaluate the importance of <it>An gambiae </it>s.l. outdoor host seeking behaviour and discuss its implications for anti-vector interventions.</p> <p>Methods</p> <p>The venue and temporal characteristics of host seeking by anopheline vectors in a hyperendemic setting was evaluated using human landing collections conducted inside and outside homes in three villages during both the wet and dry seasons in 2007 and 2008. Additionally, five bi-monthly human landing collections were conducted throughout 2009. Collections were segregated hourly to provide a time distribution of host-seeking behaviour.</p> <p>Results</p> <p>Surprisingly high levels of outdoor biting by <it>An. gambiae </it>senso stricto and <it>An. melas </it>vectors were observed throughout the night, including during the early evening and morning hours when human hosts are often outdoors. As reported previously, <it>An. gambiae </it>s.s. is the primary malaria vector in the Punta Europa region, where it seeks hosts outdoors at least as much as it does indoors. Further, approximately 40% of <it>An. gambiae </it>s.l. are feeding at times when people are often outdoors, where they are not protected by IRS or LLINs. Repeated sampling over two consecutive dry-wet season cycles indicates that this result is independent of seasonality.</p> <p>Conclusions</p> <p><it>An. gambiae </it>s.l. mosquitoes currently seek hosts in outdoor venues as much as indoors in the Punta Europa region of Bioko Island. This contrasts with an earlier pre-intervention observation of exclusive endophagy of <it>An. gambiae </it>in this region. In light of this finding, it is proposed that the long term indoor application of insecticides may have resulted in an adaptive shift toward outdoor host seeking in <it>An. gambiae </it>s.s. on Bioko Island.</p

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore