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Abstract Several alternative distance measures for comparing time series have
recently been proposed and evaluated on time series classification (TSC) problems.
These include variants of dynamic time warping (DTW), such as weighted and deriva-
tive DTW, and edit distance-based measures, including longest common subsequence,
edit distance with real penalty, time warp with edit, and move–split–merge. These
measures have the common characteristic that they operate in the time domain and
compensate for potential localised misalignment through some elastic adjustment.
Our aim is to experimentally test two hypotheses related to these distance measures.
Firstly, we test whether there is any significant difference in accuracy for TSC problems
between nearest neighbour classifiers using these distance measures. Secondly, we test
whether combining these elastic distance measures through simple ensemble schemes
gives significantly better accuracy. We test these hypotheses by carrying out one of the
largest experimental studies ever conducted into time series classification. Our first
key finding is that there is no significant difference between the elastic distance mea-
sures in terms of classification accuracy on our data sets. Our second finding, and the
major contribution of this work, is to define an ensemble classifier that significantly
outperforms the individual classifiers. We also demonstrate that the ensemble is more
accurate than approaches not based in the time domain. Nearly all TSC papers in the
data mining literature cite DTW (with warping window set through cross validation) as
the benchmark for comparison. We believe that our ensemble is the first ever classifier
to significantly outperform DTW and as such raises the bar for future work in this area.
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1 Introduction

Time-series classification (TSC) problems involve training a classifier on a set of
cases, where each case contains an ordered set of real valued attributes and a class
label. Time-series classification problems arise in a wide range of fields includ-
ing, but not limited to, data mining, statistics, machine learning, signal process-
ing, environmental sciences, computational biology, image processing and chemo-
metrics. A wide range of algorithms have been proposed for solving TSC prob-
lems [see, for example (Ding et al. 2008; Rakthanmanon and Keogh 2013; Batista
et al. 2011; Jeong et al. 2011; Bagnall et al. 2012; Deng et al. 2013; Hu et al.
2013)].

In Bagnall et al. (2012), Bagnall et al. argue that the easiest way to gain improvement
in accuracy on TSC problems is to transform into an alternative data space where
the discriminatory features are more easily detected. They constructed classifiers on
data in the time, frequency, autocorrelation and principal component domains and
combined predictions through alternative ensemble schemes. The main conclusion in
Bagnall et al. (2012) is that for problems where the discriminatory features are based
on similarity in change and similarity in shape, operating in a different data space
produces a better performance improvement than designing a more complex classifier
for the time domain. However, the issue of what is the best technique in a single data
domain is not addressed in Bagnall et al. (2012). Our aim is to experimentally determine
the best method for constructing classifiers in the time domain, an area that has drawn
most of the attention of TSC data mining researchers (Batista et al. 2011; Jeong et al.
2011). The general consensus amongst data mining researchers is that ”simple nearest
neighbor classification is very difficult to beat” (Batista et al. 2011), and the majority
of research has concentrated on alternative distance measures that can compensate
for localised distortion, such as dynamic time warping (DTW) and longest common
subsequence (LCSS) distances. In light of extensive experimental evidence (Ding et
al. 2008), DTW with warping window size set through cross validation is commonly
accepted as the gold standard against which to compare alternative measures.

Recently, a number of new elastic measures have been proposed that are variations
of the time warp and edit distance approaches. A version of DTW that weights against
large warpings (WDTW) is described in Jeong et al. (2011). The weighting scheme can
be used in conjunction with dynamic time warping and an alternative version based
on first order differences (DDTW), described in Keogh and Pazzani (2011). Variants
on the edit distance approach have also been introduced, including edit distance with
real penalty (ERP) (Chen et al. 2005), time warp edit (TWE) distance (Marteau 2009),
and the move–split-merge (MSM) distance metric (Stefan et al. 2012).

Our first objective is to extend the work in Ding et al. (2008) to statistically test
whether these two new measures are in fact significantly better than DTW. Through
statistical rank based tests (Demšar 2006) on results from 75 data sets we find that
there is no significant difference in accuracy between the elastic measures (when they
are used as a distance function for a nearest neighbour classifier).
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This leads us to the question, should we just use DTW and ignore the more complex,
less intuitive measures? Through a comparison of the predictions on the training data,
we find that although there is no overall difference in accuracy, there is frequently
significant difference between the classifiers when it comes to actual predictions. This
leads us to believe that by combining the predictions of these classifiers we may be able
to achieve an overall improvement in accuracy. We propose four alternative ensemble
schemes for combining predictions from the different classifiers. Our primary contri-
bution is to demonstrate that the accuracy of the ensembles is significantly better than
the accuracy of any single classifier. We demonstrate that the elastic ensemble results
are better than any other comparable results we have found in the literature, including
classifiers built with shapelets, intervals or pattern frequency histograms. The ensem-
ble is, we believe, the first algorithm to significantly outperform DTW (with window
size set through cross validation) on the UCR data.

We have conducted over three million experiments on 75 TSC problems. 46 datasets
come from the UCR repository (Keogh et al. 2011), 24 problems are from other pub-
lished research, including (Bagnall 2012; Rakthanmanon and Keogh 2013), and 5 are
new data sets on electricity device classification problems derived from a UK govern-
ment sponsored study (Trust 2012). All datasets and code to reproduce experiments
and results are available online (Lines and Bagnall 2014).

The structure of this paper is as follows. In Sect. 2 we provide background into TSC
and review related research on elastic distance measures and classifiers using alterna-
tive data representations. In Sect. 3 we detail the 75 data sets we used in experiments.
In Sect. 4 we describe the ensemble schemes we use to combine the alternative elastic
distance measures. In Sect. 5 we present an empirical comparison of elastic distance
measures, and in Sect. 6 we present and analyse the ensemble results and compare
them with the current state-of-the-art in TSC. Finally, in Sect. 7 we summarise our
conclusions and discuss future work.

2 Background and related work

2.1 Time Series Classification

We define time series classification as the problem of building a classifier from a
collection of labelled training time series. We limit our attention to problems where
each time series has the same number of observations. We define a time series xi
as a set of ordered observations of length m and an associated class label yi . The
training set is a set of n labelled pairs (xi, yi ). For traditional classification prob-
lems, the order of the attributes is unimportant and the interaction between vari-
ables is considered independent of their relative positions. For time series data,
the ordering of the variables is often crucial in finding the best discriminating
features.

The majority of the data mining research into TSC has concentrated on similarity
in time. This can be quantified by measures such as Euclidean distance or correlation.
Similarity in time is characterised by the situation where the series from each class are
observations of an underlying common curve in the time dimension. Variation around
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this underlying common shape is caused by noise in observation, and also by possible
misalignment in the time axes that may cause a slight phase shift. Elastic measures
that allow for some realignment can compensate for this shifting.

2.2 Dynamic Time Warping

For similarity in shape, DTW is commonly used to mitigate against distortions in the
time axis (Ratanamahatana and Keogh 2005). Suppose we want to measure the distance
between two series, a = {a1, a2, . . . , am} and b = {b1, b2, . . . , bm}. Let M(a, b) be
the m × m pointwise distance matrix between a and b, where Mi, j = (ai − b j )

2.
A warping path

P =< (e1, f1), (e2, f2), . . . , (es, fs) >

is a set of points (i.e. pairs of indexes) that define a traversal of matrix M . So, for
example, the Euclidean distance dE (a, b) = ∑m

i=1(ai − bi )
2 is the path along the

diagonal of M .
A valid warping path must satisfy the conditions (e1, f1) = (1, 1) and (es, fs) =

(m, m) and that 0 ≤ ei+1 − ei ≤ 1 and 0 ≤ fi+1 − fi ≤ 1 for all i < m.
The DTW distance between series is the path through M that minimizes the total

distance, subject to constraints on the amount of warping allowed. Let pi = Maei ,b fi

be the distance between elements at position ei of a and at position fi of b for the i th

pair of points in a proposed warping path P . The distance for any path P is

DP (a, b) =
∑

_i = 1s pi .

If P is the space of all possible paths, the DTW path P∗ is the path that has the
minimum distance, i.e.

P∗ = min
P∈P

(DP (a, b)),

and hence the DTW distance between series is

DP∗(a, b) =
k∑

i=1

pi .

The optimal path P∗ can be found exactly through a dynamic programming formu-
lation. This can be a time consuming operation, and it is common to put a restriction
on the amount of warping allowed. This restriction is equivalent to putting a maximum
allowable distance between any pairs of indexes in a proposed path. If the warping
window, r , is the proportion of warping allowed, then the optimal path is constrained
so that

|ei − fi | ≤ r · m ∀(ei , fi ) ∈ P∗.
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Fig. 1 An example of unconstrained DTW with two series from the GunPoint dataset (Keogh et al. 2011).
DTW mitigates the misalignment of the series by matching the peaks and troughs of the data

Fig. 2 Example distance matrices for the two GunPoint series from Fig. 1 with warping paths for a 50 %
warping window with DTW (a) and WDTW with a penalty value of 0.1 (b). The dark areas in a depict the
limits of the warping window where the path may not pass, whereas in b the dark areas represent areas that
are highly weighted. It can be seen that the gradient of the weighting fuction encourages the path to avoid
highly weighted areas in b, but it does not strictly prevent traversal of those areas as a warping window
does

2.3 Derivative Dynamic Time Warping

Keogh and Pazzani proposed a modification of DTW called DDTW (Keogh and Paz-
zani 2011) that first transforms the series into a series of first order differences. The
motivation for DDTW was to introduce a measure that avoids singularities, where a
single point on one series may map onto a large subsection of another time series and
create pathological results. Given a series a = {a1, a2, . . . , am}, the difference series
is a′ = {a′1, a′2, . . . , a′m−1} where a′i is defined as the average of the slopes between
ai−1 and ai and ai and ai+1, i.e.
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ABCADACDAB

BCDADBCACB

ABCADA--CDA-B

-BC-DADBC-ACB
(b)(a)

Fig. 3 An example of the LCSS problem. The example in a shows a pairwise matching of the two strings,
while b demonstrates an alignment that allows shifting within the strings to allow for more matches to be
made. The example in a is analogous with the LCSS distance with no elasticity, whereas b represents the
LCSS distance with full elasticity. This can be controlled using a parameter akin to the warping window in
DTW

a′i =
(ai − ai−1)+ (ai+1 − ai−1)/2

2
,

for 1 < i < m. DDTW is designed to mitigate against noise in the series that can
adversely affect DTW, and has also be used in conjunction with standard DTW to
simultaneously calculate similarity between series (Górecki and Łuczak 2013).

2.4 Weighted Dynamic Time Warping

A weighted form of DTW (WDTW) was proposed by Jeong et al. (2011). WDTW
adds a multiplicative weight penalty based on the warping distance between points in
the warping path. It favours reduced warping, and is a smooth alternative to the cutoff
point approach of using a warping window. When creating the distance matrix M , a
weight penalty w|i− j | for a warping distance of |i − j | is applied, so that

Mi, j = w|i− j |(ai − b j )
2.

A logistic weight function is proposed in Jeong et al. (2011), so that a warping of
a places imposes a weighting of

w(a) = wmax

1+ e−g·(a−m/2)
,

where wmax is an upper bound on the weight (set to 1), m is the series length and g
is a parameter that controls the penalty level for large warpings. The larger g is, the
greater the penalty for warping (Fig. 2).

2.5 Longest Common Subsequence

The LCSS distance is based on the solution to the LCSS problem in pattern matching.
The typical problem is to find the longest subsequence that is common to two discrete
series based on the edit distance. An example using strings is shown in Fig. 3.

This approach can be extended to consider real-valued time series by using a dis-
tance threshold ε, which defines the maximum difference between a pair of values
that is allowed for them to be considered a match. LCSS finds the optimal alignment
between two series by inserting gaps to find the greatest number of matching pairs.
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The LCSS between two series a and b can be found using Algorithm 1.

Algorithm 1 LCSS (a, b)
1: Let L be an (m + 1)× (m + 1) matrix initialised to zero.
2: for i ← m to 1 do
3: for j ← m to 1 do
4: Li, j ← Li+1, j+1
5: if ai = b j then
6: Li, j ← Li, j + 1
7: else if Li, j+1 > Li, j then
8: Li, j ← Li, j+1
9: else if Li+1, j > Li, j then
10: Li, j ← Li+1, j
11: return L1,1

The LCSS distance between a and b is

dLCSS(a, b) = 1− LCSS(a, b)

m
.

2.6 Edit Distance with Real Penalty

Other edit distance-based similarity measures have also been proposed. One such
approach is edit distance on real sequences (EDR) (Chen and Ng 2004). Like LCSS,
EDR uses a distance threshold to define when two elements of a series match, but also
includes a constant penalty that is applied for non-matching elements and where gaps
are inserted to create optimal alignments. However EDR does not satisfy triangular
inequality, as equality is relaxed by assuming elements are equal when the distance
between them is less than or equal to ε. This was revised in Chen et al. (2005),
where ERP was introduced. The motivation for ERP is that it is a metric as it satisfies
triangular inequality by using ‘real penalty’, which uses the distance between elements
when there is no gap and a constant value g for when gaps occur. The ERP distance
between element i of series a and element j of series b is

ERP(ai , b j ) =
⎧
⎨

⎩

|ai − b j | if |ai − b j | ≤ ε

|ai − g| if b j is a gap
|b j − g| if ai is a gap,

and the full ERP distance between series a of length m and series b of length n is
given recursively as

dERP(a, b) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑n
i=1 |bi − g| if m = 0

∑m
i=1 |ai − g| if n = 0

min{dERP(Tail(a), Tail(b)} + ERP(a1, b1), otherwise
dERP(Tail(a), b)+ ERP(a1, gap),

dERP(a, Tail(b))+ ERP(gap, b1)},

where Tail(a) = {a2, a3, ..., am}.
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2.7 Time warp edit distance (TWED)

Introduced by Marteau (2009), TWE distance is an elastic distance measure that, unlike
DTW and LCSS, is also a metric. It encompasses characteristics from both LCSS and
DTW as it allows warping in the time axis and combines the edit distance with Lp-
norms. The warping, called stiffness, is controlled by a parameter ν. Unlike a warping
window that constrains a DTW search, stiffness enforces a multiplicative penalty on
the distance between matched points. Setting ν = 0 results in no stiffness, or null
stiffness, giving a distance measure equivalent to a full DTW search. Setting ν = ∞
gives Euclidean distance. TWED redefines the insert, remove and match operations
used in edit distance, in favour of delete_a, delete_b and match. The delete_a operation
occurs when an element is removed from the first series to match the second, and
delete_b is when an element of the second series is removed to match the first. An
Lp-norm distance calculation is used when matches are found, and a constant penalty
value λ is applied when sequences do not match. The formal definition TWED can
be found in Marteau (2009), and a dynamic programming implementation is given in
Algorithm 2.

Algorithm 2 TWE Distance(a, b, λ, ν)
1: Let D be an m + 1× n + 1 matrix initialised to zero.
2: D(1, 1) = 0
3: D(2, 1) = a1

2

4: D(1, 2) = b1
2

5: for i ← 3 to m + 2 do
6: D(i, 1) = D(i − 1, 1)+ (ai−2 − ai−1)2

7: for j ← 3 to n + 2 do
8: D(1, i) = D(1, j − 1)+ (b j−2 − b j−1)2

9: for i ← 2 to m + 2 do
10: for j ← 2 to n + 2 do
11: if i > 1 and j > 1 then
12: dist1 = D(i − 1, j − 1)+ ν × |i − j | × 2+ (ai−1 − b j−1)2 + (ai−2 − b j−2)2

13: else
14: dist1 = D(i − 1, j − 1)+ ν × |i − j | + (ai−1 − b j−1)2

15: if i > 1 then
16: dist2 = D(i − 1, j)+ (ai−1 − ai−2)2 + λ+ ν

17: else
18: dist2 = D(i − 1, j)+ ai−1

2 + λ

19: if j > 1 then
20: dist3 = D(i, j − 1)+ (b j−1 − b j−2)2 + λ+ ν

21: else
22: dist3 = D(i, j − 1)+ b j−1

2 + λ

23: D(i, j) =min(dist1, dist2, dist3)

24: return D(m + 1, n + 1)

2.8 Move-Split-Merge

MSM was introduced in Stefan et al. (2012). The authors motivate the intro-
duction of MSM as it satisfies a number of desirable traits that they set out to
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incorporate into a single similarity measure: it is robust to temporal misalign-
ments; it is translation invariant; it has a competitive quadratic run-time with
DTW; and it is a metric. MSM is conceptually similar to other edit distance-based
approaches, where similarity is calculated by using a set of operations to trans-
form a given series into a target series. Each operation has an associated cost, and
three operations are defined for MSM: move, split, and merge. Move is synony-
mous with a substitute operation, where one value is replaced by another. Split
and merge differ from other approaches, as they attempt to add context to inser-
tions and deletions. Stefan et al. state that cost of inserting and deleting values
should depend on the value itself and adjacent values, rather than treating all inser-
tions and deletions equally (for example, as in ERP). Therefore, the split opera-
tion is introduced to insert an identical copy of a value immediately after itself,
and the merge operation is used to delete a value if it directly follows an iden-
tical value. The formal definition of MSM can be found in Stefan et al. (2012),
and a dynamic programming implementation is given in Algorithm 3 using the cost
function

C(ai , ai−1, b j ) =
{

c if ai−1 ≤ ai ≤ b j or ai−1 ≥ ai ≥ b j

c +min(|ai − ai−1|, |ai − b j |) otherwise.

Algorithm 3 MSM Distance(a, b)
1: Let D be an m × n matrix initialised to zero.
2: D(1, 1) = |a1 − b1|
3: for i ← 2 to m do
4: D(i, 1) = D(i − 1, 1)+ C(ai , ai−1, b1)

5: for i ← 2 to n do
6: D(1, i) = D(1, i − 1)+ C(bi , a1, b + i − 1)

7: for i ← 2 to m do
8: for j ← 2 to n do
9: D(i, j) =min(D(i − 1, j − 1)+ |ai − b j |,

D(i − 1, j)+ C(ai , ai−1, y j ),

D(i, j − 1)+ C(y j , xi , xi−1))

10: return D(m, n)

2.9 Other approaches

The elastic distance measures discussed in Sect. 2 are the current state of the art for
TSC in the time domain. However, a number of algorithms have recently been pro-
posed that utilise alternative data representations. These operate by either explicitly
transforming the data and then constructing a classifier, or by embedding the trans-
formation within the classification algorithm. Our primary experimental objective is
comparing classifiers based on elastic distance measures. However, we believe that
no one representation or approach will dominate all others, so for the sake of com-
pleteness and context we briefly review the most prominent of the recent approaches.
In Sect. 6.2 we compare, where possible, our results to those published in the papers
referenced below.
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2.9.1 Shapelet representation

One alternative to time domain classifiers is time series shapelets (Ye and Keogh
2009; Rakthanmanon and Keogh 2013; Hills et al. 2013). Shapelets are time series
subsequences that are discriminatory of class membership. They allow for the detection
of phase-independent localised similarity between series within the same class. The
original shapelets algorithm by Ye and Keogh (2009) uses a shapelet as the splitting
criterion for a decision tree. Hills et al. (2013) propose a shapelet transformation that
separates the shapelet discovery from the classifier by finding the top k shapelets on
a single run (in contrast to the decision tree, which searches for the best shapelet
at each node). The shapelets are used to transform the data, where each attribute
in the new dataset represents the distance of a series to one of the shapelets. They
demonstrate that the ability to use more sophisticated classifiers in conjunction with
shapelets significantly reduces classification error. Both (Ye and Keogh 2009; Hills
et al. 2013) find shapelets through enumeration. Rakthanmanon and Keogh (2013)
present an approximate shapelet finding approach based on discretisation and random
projection that significantly speeds up the shapelet discovery process.

2.9.2 Interval features

A further approach at finding localised discriminatory features is based on summary
statistics calculated over different width intervals of a series. For a series of length m,
there are m(m − 1)/2 possible contiguous intervals. Rodriguez et al. (2005) calculate
binary features over these intervals, based on threshold rules on the interval mean and
standard deviation. A subset of features are created through a boosting scheme, then
transformed into an interval feature space that forms the training data for a support
vector machine.

Deng et al. (2013) calculate three statistics on each of the possible features. They
calculate the mean, standard deviation, and slope, and use these features to construct
classifiers. Rather than generate the entire new feature space of 3m(m−1)/2 attributes,
they use a random forest classifier, with each member of the ensemble assigned a
random subset of features from the interval feature space.

2.9.3 Pattern frequency features

In information retrieval, the bag-of-words approach of estimating word frequencies
and ignoring location is very common. Two recent papers have adopted this approach
for time series classification. The idea is to estimate the frequency of occurrence of
localised characteristics of the series, and then use these frequencies as new features
for a classifier. Lin et al. (2012) propose a bag-of-patterns (BoP) approach that involves
converting a time series into a discrete series using Symbolic Aggregate approximation
(SAX) (Lin et al. 2007), creating a set of SAX words for each series through the
application of a short sliding window, then using the frequency count of the words in
a series as the new feature set.

Baydogan et al. (2013) describe a bag-of-features approach that combines interval
and frequency features. The algorithm, called time series based on a bag-of-features
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representation (TSBF), involves separate feature creation and classification stages. The
feature creation stage involves generating random intervals and then creating features
representing the mean, variance and slope over the interval. The start and end point of
the interval are also included as features in order to retain the possibility of detecting
temporal similarity. There is then a further feature transform that involves supervised
learning. The features of each interval form an instance, and each time series now
represents a bag. A classifier is used to generate a class probability estimate for each
instance. The probability estimates of all instances for a given time series (bag) are
then discretised and a histogram for each possible class value is formed. The resulting
concatenated histograms form the feature space for the training set of a classifier. A
random forest classifier is used for the labelling and a random forest and support vector
machine for the classification in Baydogan et al. (2013).

3 Data sets

We have collected 75 data sets, the names of which are shown in Table 1. 46 of
these are available from the UCR repository (Keogh et al. 2011), 24 were used in
other published work (Bagnall 2012; Hills et al. 2013; Rakthanmanon and Keogh
2013) and 5 are new data sets we present for the first time. Further information and
the data sets we have permission to circulate are available from (Lines and Bagnall
2014). We have removed the dataset ECG200 from all experiments, because an error
in data processing means that it can be perfectly classified with a single rule on the
sum of squared values for each series [see Bagnall et al. (2012)] for further details).

Table 1 Data sets grouped by problem type. The actual file names are in a string array in the supporting
code
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Furthermore, as also recommended in Bagnall et al. (2012), we have normalised the
datasets Coffee, Olive Oil and Beef.

We have grouped the problems into categories to help aid interpretation. The group
of sensor readings forms the largest category with 29 data sets. If we had more data sets
it would be sensible to split the sensor categories into subtypes, such as human sensors
and spectrographs. However, at this point such sub-typing would lead to groups that are
too small. Image outline classification is the second largest category, with 28 problem
sets. Many of the image outline problems, such as BeetleFly, are not rotationally
aligned, and the expectation would be that classifiers in the time domain will not
necessarily perform well with these data. The group of 12 motion problems contains
data taken from motion capture devices attached to human subjects. The final category
is simulated data sets.

3.1 Electricity datasets

We provide five new classification problems that focus on domestic electricity con-
sumption within the United Kingdom. These problems were taken from data recorded
as part of government sponsored study (Trust 2012). The intention was to collect
behavioural data about how consumers use electricity within the home to help reduce
the UK’s carbon footprint. The aim is to reduce CO2 emissions 80 % by 2050, and it is
clear that reductions in household consumption will be crucial to meet this goal. Much
recent attention has been placed on how to reduce consumer consumption without a
perceived reduction to quality of life, and one attempt to do this by the UK government
is to install smart meters with real-time displays into every household. At a cost of
£11.1 bn, the project aims to alert consumers of their current consumption with the
primary objective to show consumers their real-time spending, with the hope that this
insight will cause them to reduce unnecessary consumption to save money. However,
this project will also create vast streams of data from the 30 million households that
will be monitored, so it is imperative that further information is extracted from the
data to support other projects, such as creating smart energy grids and managing the
creation of renewable energy.

The datasets that we introduce support the goal of promoting further understand-
ing of domestic electricity consumption by classifying appliances according to their
electricity usage profiles. The data contains readings from 251 households, sampled
in two-minute intervals over a month. When designing the classification problems we
took our previous work in Lines et al. (2011) into account. We originally classified 10
device types according to daily and weekly profiles sampled over 15-minute intervals.
This work influenced the creation of the new datasets in two regards. Firstly, we found
that if consumption data from a specific device in a given household were included
in both the training and testing data, bias was introduced into classification results as
decisions were made by matching the specific device, rather than classifying the class
of the devices. Secondly, we noted it was difficult to differentiate between devices
with similar purposes and behavioural patterns. Therefore, for the datasets we create
two distinct types of problem: problems with similar usage patterns (Refrigeration,
Computers, Screen) and problems with dissimilar usage patterns (Small Kitchen and
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Table 2 The five new TSC
problems with class values

Problem Class labels

Small kitchen Kettle, microwave, toaster

Large kitchen Dishwasher, tumble dryer, washing machine

Refrigeration Fridge/freezer, refrigerator, upright freezer

Computers Desktop, laptop

Screen CRT TV, LCD TV, computer monitor

Large Kitchen). The aim is that problems with dissimilar usage patterns should be well
suited to time-domain classification, whilst those with similar consumption patterns
should be much harder. The five problems we form are summarised in Table 2. Further
information on these data sets can be found at Lines and Bagnall (2014).

3.2 Hand/bone outlines datasets

A project on automated bone ageing gave rise to 10 image outline classification prob-
lems (Davis et al. 2012). Algorithms to automatically extract the hand outlines and
then the outlines of three bones of the middle finger (proximal, middle and distal
phalanges) were applied to over 1,300 images, and three human evaluators labelled
the output of the image outlining as correct or incorrect. This generated three clas-
sification problems (DistPhalanxOutline, MidPhalanxOutline, ProxPhalanxOutline).
The next stage of the project was to use the outlines to predict information about
the subjects age. The three problems DistPhalanxAge, MidPhalanxAge and Prox-
PhalanxAge involve using the outline of one of the phalanges to predict whether the
subject is one of three age groups: 0–6 years old, 7–12 years old and 13–19 years old.
Note that these problems are aligned by subject, and hence can be treated as a multi
dimensional TSC problem. Data file Phalanges contains the concatenation of all three
problems. Bone age estimation is usually performed by an expert with an algorithm
called Tanner-Whitehouse (2001). This involves scoring each bone into one of seven
categories based on the stage of development. The final three bone image classification
problems, DistPhalanxTW, MidPhalanxTW and ProxPhalanxTW, involve predicting
the Tanner-Whitehouse score (as labelled by a human expert) from the outline.

4 Ensemble schemes

An ensemble of classifiers is a set of base classifiers whose individual decisions are
combined through some process of fusion to classify new examples. One key concept
in ensemble design is the requirement to inject diversity into the ensemble. Broadly
speaking, diversity can be achieved in an ensemble by: employing different classi-
fication algorithms to train each base classifier to form a heterogeneous ensemble;
changing the training data for each base classifier through a sampling scheme or by
directed replication of instances (for example, Bagging); selecting different attributes
to train each classifier, often randomly; or modifying each classifier internally, either
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through re-weighting the training data or through inherent randomization (for example,
AdaBoost).

Ensembles have been used in time series data mining (Deng et al. 2013; Bagnall
et al. 2012). Deng et al. (2013) propose a random forest (Breiman 2001) built on
summary statistics of intervals. They compare against a random forest built on the
raw data, 1-NN with Euclidean distance and 1-NN with DTW. Their results suggest
that the transforms they propose significantly improve the random forest classifier.
Buza (2011) proposes an ensemble that combines alternative elastic and inelastic
distance measures and compares performance to DTW and stacking (an alternative
form of ensemble) support vector machines. Our approach is more transparent. We
construct each of the classifiers independently, then assess alternative voting schemes
for using these predictions.

We have experimented with four separate, and very simple, weighting schemes. The
first, Equal, gives equal weight to the predictions of each classifier. Clearly the fastest
to train, it nevertheless will be deceived on problems where the classifier is inaccurate.
The other techniques are based on the cross validation accuracy on the training set.
Best assigns a weight of 1 to the transform with the highest CV accuracy and zero to
the others. Equal is at one extreme (ignoring the information from training), whereas
Best is at the other. If the CV accuracy is a good estimator (i.e. unbiased and low
variance) of the true accuracy, then Best will be the optimal scheme. However, with
small data set sizes and complex underlying models, this approach may be brittle. In
effect we are putting too much faith in the CV accuracy. To counteract this, we also use
a method Proportional, which assigns the weight as the CV accuracy, normalised over
the number of transformations, and Significant. Significant is a combination approach
of Best and Proportional. It only includes the classifiers which are not significantly
worse than the classifier with the highest CV accuracy. We start by finding the classifier
with the highest CV accuracy (ties are split randomly). We then test significance using
McNemar’s test, which is based on the counts of coincidence of correct and incorrect
predictions. If we reject the null hypothesis of no difference to the best classifier, the
weight of classifier in question is set to zero. If we cannot reject the null, it is set to the
appropriate CV accuracy. This approach is meant to remove clearly inferior transforms
whilst allowing for smaller inaccuracies in the power of the CV accuracy to estimate
the true accuracy.

5 Comparison of elastic measures

We conducted our classification experiments with WEKA (Hall et al. 2009) source
code adapted for time series classification, using the 75 data sets described in Sect. 3.

All datasets are split into a training and testing set, and all parameter optimisation
is conducted on the training set only. We use a train/test split for several reasons.
Firstly, it is common practice to do so with the UCR datasets (for example, the papers
proposing WDTW (Jeong et al. 2011) and TWE (Marteau 2009) both use a test train
split). Secondly, some of the data sets are designed so the train/test split removes
bias (for example, see Sect. 3.1). Combining to perform a cross validation would
reintroduce the bias.
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Our data sets have been randomly selected, in the sense that we are not attempting
to find data sets more suitable for one particular algorithm. However, as Table 1
demonstrates, there is a bias in areas of application we are considering. There are, for
example, no problems from econometrics or finance. Because of this, we also present
results split by problem type where appropriate.

In proposing WDTW, Jeong et al. present results on 20 UCR data sets and claim that
“our proposed distance measures, WDTW and WDDTW, clearly outperform standard
DTW, DDTW and LCSS” (Jeong et al. 2011). In Marteau (2009), TWE is evaluated
on the same 20 data sets, and it is claimed “the TWED distance is effective ... since it
exhibits, on the average, the lowest error rates for the testing data”. As is common
in much of the time series classification literature, the support for these algorithms is
based on an informal consideration of the number of wins or average accuracy rather
than tests of significance. Our objective is to assess if there is any significant differ-
ence in accuracy (or equivalently, error) between eleven related distance measures:
Euclidean distance (ED), dynamic time warping with full window (DTW), derivative
DTW with full window (DDTW), DTW and DDTW with window size set through
cross validation (DTWCV and DDTWCV), weighted DTW and DDTW (WDTW and
WDDTW), LCSS, ERP, TWE, and the MSM. All parameter optimisation is conducted
on the training set through cross validation, with each algorithm allowed 100 model
selection evaluations. In machine learning, the generally accepted statistic for com-
paring k classifiers over n data sets is a non-parametric form of Analysis of Variance
based on ranks, described in Demšar (2006). The null hypothesis is that the aver-
age rank of k classifiers on n data sets is the same, against the alternative that at
least one classifier’s mean rank is different. So, given an n by k matrix M of error
rates, the first stage is to evaluate the n by k rank matrix R, where ri j is the rank of
the j th classifier on the i th data set. The ranks of those classifiers that have equal

error are averaged. The average rank of each classifier is then denoted r̄ j =
∑n

i=1 ri j
n .

Under the null hypothesis of the ranks being equal for all classifiers, the Friedman
statistic Q,

Q = 12n

k(k + 1)
·
⎡

⎣
k∑

j=1

r̄2
j −

k(k + 1)2

4

⎤

⎦

can be approximated by a a Chi-squared distribution with (k− 1) degrees of freedom.
However, Demšar (2006) identifies that previous work has shown that this approxi-
mation to the distribution of Q is conservative, and proposed using

F = (n − 1)Q

n(k − 1)− Q

which, under the null hypothesis, follows an F distribution with (k − 1) and
(k − 1)(n− 1) degrees of freedom. If the result of the test is to reject the null hypoth-
esis, Demšar recommends grouping classifiers into cliques, within which there is no
significant difference in rank. This allows the average ranks and groups of not signif-
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Fig. 4 The average ranks for eleven 1-NN classifiers on the 75 data sets described in Sect. 3. The critical
difference for α = 5 % is 1.6129

icantly different classifiers to be plotted on an order line in a graph referred to as a
critical difference diagram.

Figure 4 shows the critical difference diagram for eleven 1-NN classifiers on the
75 data sets. We observe that, firstly, there is no one classifier that significantly out-
performs the others. There are four cliques within which no significant difference is
observed. The top clique contains all but ED, DDTW and DTW. There is no signif-
icant difference between any of the elastic measures. The conclusions we can draw
from these results is that, firstly, it is easy to outperform Euclidean distance, secondly,
setting window size through cross validation improves the ranks of both DTW and
DDTW (an observation first made in Ratanamahatana and Keogh (2005)) and thirdly,
introducing weights (WDTW) also significantly improves full window DTW.

These results do not lend any weight to one elastic algorithm over the others. Given
the standard practice is to use DTWCV (Batista et al. 2011), the obvious question is,
do our experiments indicate that there is any reason to use any of the other classifiers?

5.1 Time complexity comparison

In addition to comparing error rates across our 75 datasets, we can also evaluate the time
complexities of the individual distance measures. There could be a case for dismissing
distance measures if they have relatively poor time complexities and do not improve
on the error rates of other measures. However for the measures that we consider, each
has a basic time complexity of O(n2) (with the exception of the Euclidean Distance
which is O(n)), but this is confounded slightly when considering parameter options.
For example, constraining a DTW search with a warping window reduces the time
complexity to O(nr), where r is the size of the warping that is allowed by the window.
In general however, there is little to choose from when comparing the runtime of the
different measures. The graph presented in Fig. 5 demonstrates the difference in time
taken between the measures when calculating the distance between two series from
each of the 75 datasets. For the purpose of presentation, each of the 100 parameter
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Fig. 5 A comparison of the runtime to compute the distance of two series with each distance measure for
each of the 75 datasets. The times were calculated by running each parameter option 100 times and taking
the median for each option, then taking the median of the 100 options for each dataset

selections for each distance measure were run 100 times and the median was taken
for each, and then the median of the resulting 100 parameters options was selected for
presentation. It is interesting to note that in Fig. 5, TWE does not scale as well as the
other O(n2) measures. However, since the time complexity is still O(n2), we choose
not to omit any measures due to their time complexities.

It should be noted that we have used the standard implementations of each type of
distance measure in our work. It may be possible to speed up certain components of
measures (for example, using parallelisation or lower bounding). However, we wish to
keep our message clear so use the standard implementations of each measure without
implementing any such speedups.

6 Ensembles of elastic distance measures

One reason for not using DTWCV would be if we could determine on the training
data which alternative classifier is the most appropriate. We can assess the a priori
usefulness of alternative classifiers with a type of plot introduced in Batista et al.
(2013). The basic principle is that the ratio of the training accuracy of two classifiers
(generated through cross validation) should give an indication to the outcome for the
test data. However, if the cross validation accuracy is biased or subject to high variance,
then often the ratio will be misleading. The plot of training accuracy ratio vs. testing
accuracy ratio give a continuous form of contingency table for assessing the usefulness
of the training accuracy. If the ratio on training data and testing data are both greater
than one then the case is true positive (we predict a gain for one algorithm and also
observe a gain). If both ratios are less than one, the problem is a true negative (we
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(a) (b)

(c) (d)

Fig. 6 Texas sharpshooter plots of DTWCV vs. a LCSS, b WDTW, c TWE and d MSM. The points on
the plots represents results for each of the 75 datasets, where expected accuracy gain is calculated as the
ratio of the each of measure vs. DTWCV on the training data and the actual accuracy gain is calculated as
the ratio between the measures and DTWCV on the test data. If training CV accuracies of the measures
offer a good a priori indication of test performance, we would expect there to be few false results. However,
there is no clear trend of true positives or true negatives with any of the four measures, so simply relying on
the training CV accuracies to determine which measure will be most effective in advance is not a reliable
strategy

predict a loss and also observe a loss). Otherwise, we have an undesirable outcome. If
the data sets are evenly spread between the four quadrants, then Batista et al. observe
that we have a situation analogous to the Texas sharpshooter fallacy (which comes
from a joke about a Texan who fires shots at the side of a barn, then paints a target
centered on the biggest cluster of hits and claims to be a sharpshooter). Figure 6 shows
the graphs for DTWCV against LCSS, WDTW, TWE, and MSM.

The number of data sets in true positive or true negative are 38, 31, 35 and 49
respectively. This means that using the cross validation accuracy to determine which
classifier is going to be better on the test data is worse than guessing in three out of
four cases. If there is a difference between the classifiers, then there is too much bias
and/or variance in the training accuracy to detect it.

A second reason for using WDTW, LCSS, ERP, TWE, or MSM, rather than
DTWCV, would be if they performed better on a particular problem domain. Table 3
shows the average ranks of these six distance measures on the different problem types.
LCSS and MSM perform well on the image outlines, WDTW is best on motion,
and ERP on sensor. The two DTW approaches rank highly on motion and sensor,
but relatively poorly on image outlines. LCSS is in many ways closer to a Shapelet
approach (Rakthanmanon and Keogh 2013) than DTW, and this result suggests that
subsequence matching techniques such as LCSS and Shapelets may be better for image
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Table 3 Average ranks of six
classifiers across the 75 datasets
split by problem type (as
originally defined in Table 1)

Type DTWCV WDTW LCSS MSM TWE ERP

IMAGE 3.93 3.91 2.89 2.79 3.48 4.00
MOTION 3.29 2.67 4.04 3.17 3.88 3.96
SENSOR 3.22 3.16 4.34 3.43 3.78 3.07
SIM 4.08 2.08 3.67 3.50 3.92 3.75
Overall 3.57 3.27 3.70 3.15 3.69 3.61

Table 4 Number of data sets
where the individual classifiers
are significantly different from
each other

DTWCV WDTW LCSS TWE ERP MSM

DTWCV 0 1 30 22 14 23

WDTW 1 0 26 21 12 22

LCSS 30 26 0 24 23 18

TWE 22 21 24 0 19 17

ERP 14 12 23 19 0 20

MSM 23 22 18 17 20 0

outline classification. TWE is worst on the simulated set (the least interesting cate-
gory) but is mid ranked on the other categories. This may be a reflection of the hybrid
nature of the algorithm.

Whilst the problem type may give some indication as to the best measure to use, it
is far from conclusive. A third possible use for the alternative measures is within an
ensemble. The key design criteria for a successful ensemble is that the components
produce diverse predictions. If the classifiers are approximately equal in accuracy and
yet divergent in predictions, then it is possible to reduce the variance in prediction
and hence produce an overall more accurate classifier. Put more simply, if they are
getting a different subset of cases correct, then there is the possibility of combining
their predictions to increase the overall number correct.

To measure divergence in predictions, we perform a pairwise McNemar’s test
between each of our classifiers, and count the number of data sets where the null
hypothesis that the probability of misclassification is the same either way can be
rejected. Table 4 gives the number of significant differences (at the 5 % level) between
pairs of distance functions. There is only a single data set where WDTW is signifi-
cantly different to DTWCV, but both DTWCV and WDTW differ on a high proportion
of the data sets when compared to LCSS and TWE. Furthermore, TWE is different on
over twenty data sets in relation to all of the other classifiers.

Clearly, whilst the overall performances are not significantly different, there is sig-
nificant diversity in predictions on many of the data sets. Hence, we test whether a
significantly more accurate classifier can be obtained by combining the predictions
of the alternative elastic distance measure with the ensemble techniques described
in Sect. 4. Figure 7 shows the average ranks and critical differences for the top six
individual classifiers and the four ensembles. We have omitted the results of the worst
performing constituent classifiers for clarity. The full results are available on the asso-
ciated website (Lines and Bagnall 2014).
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Fig. 7 The average ranks for the six highest ranked individual classifiers and four ensemble techniques
across the 75 datasets

Fig. 8 Scatter plot of test
accuracies of a single DTWCV
classifier against the
proportional ensemble

The three ensemble techniques Equal, Significant and Proportional are all signifi-
cantly better than all of the individual classifiers. The ensemble Best does not actually
give significant improvement over MSM. This reiterates the danger of placing too
much emphasis on training cross validation measures. Our attempt to ensemble using
an inclusion threshold (Significant) does not provide any improvement over weighting
proportional to CV accuracy.

The improvement in performance of the ensembles over the single classifiers is
dramatic. The average rank of the proportional ensemble is 3.17 higher than the best
performing single classifier (MSM). This difference gives a P-value of 0.002. The
proportional ensemble is better than all of DTWCV, WDTW, LCSS, ERP, TWE and
MSM on 46 of the 75 data sets, and better than at least two of these six classifiers on
all data.

We believe the proportional ensemble is the first classifier to be significantly more
accurate than DTWCV on TSC problems. Figure 8 demonstrates this improvement
through a scatter plot of accuracies of DTWCV against the ensemble. Plots against
LCSS, WDTW, MSM, and TWE exhibit a very similar pattern.
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Fig. 9 Ranks of four classifiers
on the original 19 UCR data sets
(omitting ECG)
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Finally, to counter any accusations of implementation bias or data set cherry picking,
we compare our proportional ensemble results on the original 19 UCR data sets used
in the evaluation of Marteau (2009); Jeong et al. (2011) with the results reported
in the papers. Figure 9 shows the resulting critical difference diagram. Firstly, the
author’s own results show no critical difference between DTWCV and WDTW, TWE
or MSM. This is despite the fact that the results reported for WDTW include allowing
the algorithm half the test data for model selection (an advantage they did not give to
DTWCV). Secondly, the ensemble results are significantly better.

There are numerous metrics for assessing new algorithms for TSC. While we believe
that accuracy is the most important of these, it is also important to consider the time
complexity of new approaches. The ensemble is clearly more time consuming than
DTWCV and the other single measures in practice as the ensemble is a combination
of 11 individual measures. However, no constituent measure has a time complexity
worse than O(n2), which results in the ensemble also having O(n2) time complexity.
With this in mind, it should be noted that the design of the ensemble lends itself well
to modern computing architectures. As the ensemble is made up of distinct constituent
classifiers, there is ample potential for running constituents as subroutines in a par-
allel architecture to accelerate classification performance. As previously discussed in
Sect. 5.1 however, we have not implemented any such speedups in this work to allow
us to maintain focus on the classification accuracy of the ensemble against DTWCV
and the other elastic measures.

6.1 Internal classifier contribution

The results of the proportional ensemble leads us to a question: is there a subset of
classifiers that, when coupled with DTWCV, is responsible for significantly improving
performance when compared to DTWCV alone, or is the performance gain due to the
weighted contribution of all constituent classifiers? We investigate this by creating an
incremental version of the proportional ensemble. In the first iteration, the ensemble
contains the DTWCV classifier only. With each subsequent iteration, we add the best
ranked classifier from our experiments that is not already included, and classify each
of the 75 datasets using the proportional weighting scheme at each step. We repeat
this process until each of the 11 constituent classifiers are included in the ensemble.
The average error rates across all datasets at each iteration are shown in Fig. 10.

The error rates in Fig. 10 appear to steadily decrease with the inclusion of additional
classifiers, rather than substantially changing with the inclusion of a specific classifier.
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Fig. 10 The error rates of the proportional ensemble scheme when adding classifiers incrementally. The
ensemble initially contains DTWCV only, and at each iteration, the best-ranked classifier that is not currently
included is added

This trend tails off towards the end of the experiment however, and the error rates
appear to plateau after the inclusion of DDTWCV. This can be explained because the
subsequent classifiers, DTW, DDTW, and ED, should already be represented within
the ensemble on problems where they are an effective solution. For example, if we
take a problem where DTW with a full window is the optimal solution, the DTWCV
within the ensemble should also have a window set to 100% after carrying out CV. The
consequence of this is that in cases where the DTW classifier is optimal, the DTWCV
should be identical (assuming CV correctly detects that a full window is optimal). The
equivalent theory is also true for DDTW with DDTWCV, and ED with DTWCV and
a window size of 1 %.

These results suggest that the performance of the ensemble is dependent on the
weighted votes of the majority of the constituent classifiers, rather than a small subset.
There is a case for removing the simpler, constrained, classifiers that do not have values
set through CV as they do not appear to positively influence classification. However,
they do not reduce accuracy either, so for clarity we continue to consider them within
the ensemble to keep results consistent.

6.2 Comparison of the proportional ensemble to other approaches

There are currently 47 UCR data sets available, and a subset of these have been
used in all recent research on TSC. All our comparison results are available on the
accompanying website. In all of the analysis below, we discount ECG200. Two are not
in the general release (car and plane), so the greatest number of results we compare
against is 44. We test the difference between pairs of algorithms using a Wilcoxon
signed rank test with α set to 1 %. A full list of the results is presented in Tables 5
and 6.

Fast shapelets and logical shapelets (Ye and Keogh 2009; Rakthanmanon and Keogh
2013) were evaluated on 33 UCR datasets. One is ambiguous (named Cricket, when
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Table 5 The full results of the state of the art in TSC on the UCR datasets (part one of two)

Dataset ED DTWCV TSF TSBF CID PROP

Adiac 0.389 0.391 0.261 0.245 0.379 0.353

Beef 0.467 0.467 0.3 0.287 0.467 0.367

Car 0.267 0.233 – – – 0.167

CBF 0.148 0.004 0.039 0.009 0.001 0.002

ChlorineConcentration 0.35 0.35 0.26 0.336 0.351 0.36

CinC_ECG_torso 0.103 0.07 0.069 0.262 0.054 0.062

Coffee 0.25 0.179 0.071 0.004 0.179 0

Cricket_X 0.426 0.236 0.287 0.278 0.249 0.203

Cricket_Y 0.356 0.197 0.2 0.259 0.197 0.156

Cricket_Z 0.38 0.18 0.239 0.263 0.205 0.156

DiatomSizeRed. 0.065 0.065 0.101 0.126 0.065 0.059

ECGFiveDays 0.203 0.203 0.07 0.183 0.218 0.178

FaceAll 0.286 0.192 0.231 0.234 0.144 0.152

FaceFour 0.216 0.114 0.034 0.051 0.125 0.091

FacesUCR 0.231 0.088 0.109 0.09 0.102 0.063

fiftywords 0.369 0.242 0.277 0.209 0.226 0.18

fish 0.217 0.16 0.154 0.08 0.154 0.034

GunPoint 0.087 0.087 0.047 0.011 0.073 0.007

Haptics 0.63 0.588 0.565 0.488 0.571 0.584

InlineSkate 0.658 0.613 0.675 0.603 0.586 0.567

ItalyPowerDemand 0.045 0.045 0.033 0.096 0.044 0.039
Lightning2 0.246 0.131 0.18 0.257 0.131 0.115

Lightning7 0.425 0.288 0.263 0.262 0.26 0.233

MALLAT 0.086 0.086 0.072 0.037 0.075 0.05

MedicalImages 0.316 0.253 0.232 0.269 0.258 0.245

MoteStrain 0.121 0.134 0.118 0.135 0.205 0.114

NonInvasive.Thorax1 0.171 0.185 0.103 0.138 – 0.178

NonInvasive.Thorax2 0.12 0.129 0.094 0.13 – 0.112

OliveOil 0.133 0.167 0.1 0.09 0.167 0.133

OSULeaf 0.483 0.384 0.426 0.329 0.372 0.194

Plane 0.038 0 – – – 0

SonyAIBORobot. 0.141 0.141 0.235 0.175 0.185 0.293

SonyAIBORobot.II 0.305 0.305 0.177 0.196 0.123 0.124

StarLightCurves 0.151 0.095 0.036 0.022 0.066 0.079

SwedishLeaf 0.213 0.157 0.109 0.075 0.117 0.085

Symbols 0.1 0.062 0.121 0.034 0.059 0.049

SyntheticControl 0.12 0.017 0.023 0.008 0.027 0.01

Trace 0.24 0.01 0 0.02 0.01 0.01

TwoLeadECG 0.253 0.132 0.112 0.046 0.138 0.067

TwoPatterns 0.09 0.0015 0.053 0.001 0.004 0
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Table 5 continued

Dataset ED DTWCV TSF TSBF CID PROP

UWaveGesture._X 0.261 0.227 0.213 0.164 0.211 0.199

UWaveGesture._Y 0.338 0.301 0.288 0.249 0.278 0.283

UWaveGesture_Z 0.35 0.322 0.267 0.217 0.293 0.29

wafer 0.005 0.005 0.047 0.004 0.006 0.003

WordSynonyms 0.382 0.252 0.381 0.302 0.243 0.226

yoga 0.17 0.155 0.157 0.149 0.156 0.121

The results are split into two parts for readability; part one includes results for Euclidean Distance (ED),
DTW with window set through CV (DTWCV), Time Series Forests (TSF) (Deng et al. 2013), Time Series
Bag of Features (TSBF) (Baydogan et al. 2013), Complexity-Invariant Distance (CID) (Batista et al. 2013),
and the Proportional Elastic Ensemble (PROP). Dashes indicate where results were not available. The results
are continued in Table 6, and the best result on each dataset across both tables is shown in bold

Table 6 The full results of the state of the art in TSC on the UCR datasets (part two of two)

Dataset BoP LS FS ST FUSION TE PROP

Adiac 0.432 0.414 0.514 0.486 0.352 0.358 0.353

Beef 0.433 0.433 0.447 0.167 – 0.4 0.367

Car – – – – 0.283 – 0.167

CBF 0.013 0.114 0.053 0.001 – 0.171 0.002

ChlorineConcentration 0.036 0.382 0.417 0.333 0.473 – 0.36

CinC_ECG_torso – 0.301 0.174 0.137 0.043 – 0.062

Coffee – 0.036 0.068 0 – 0.214 0

Cricket_X – – – – – – 0.203

Cricket_Y – – – – – – 0.156

Cricket_Z – – – – – – 0.156

DiatomSizeRed. – 0.199 0.117 0.127 – – 0.059

ECGFiveDays – 0.006 0.004 0 – – 0.178

FaceAll 0.219 0.341 0.411 0.254 – 0.281 0.152

FaceFour 0.023 0.511 0.09 0.102 0.116 0.148 0.091

FacesUCR – 0.338 0.328 – 0.077 – 0.063

fiftywords 0.466 – – – 0.224 0.352 0.18

fish 0.074 0.223 0.197 0.029 – 0.194 0.034
GunPoint 0.093 0.107 0.061 0.013 – 0.053 0.007

Haptics – – – – 0.587 – 0.584

InlineSkate – – – – 0.462 – 0.567

ItalyPowerDemand – 0.064 0.095 0.052 – – 0.039

Lightning2 0.164 0.574 0.295 0.393 0.206 0.23 0.115

Lightning7 0.466 0.452 0.403 0.233 0.251 0.301 0.233

MALLAT – 0.344 0.033 0.074 0.1 – 0.05

MedicalImages – 0.413 0.433 0.393 0.234 – 0.245

MoteStrain – 0.168 0.217 0.111 0.07 – 0.114
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Table 6 continued

Dataset BoP LS FS ST FUSION TE PROP

Plane – – – – – – 0

SonyAIBORobot. – 0.14 0.314 0.105 – – 0.293

SonyAIBORobot.II – 0.154 0.215 0.109 – – 0.124

StarLightCurves – – – – 0.15 – 0.079

SwedishLeaf 0.198 0.187 0.269 0.118 0.115 0.157 0.085

Symbols – 0.357 0.068 0.118 – – 0.049

SyntheticControl 0.037 0.53 0.081 0.02 – 0.083 0.01

Trace 0 0 0.002 0.02 – 0.2 0.01

TwoLeadECG – 0.144 0.09 – – – 0.067

TwoPatterns 0.129 0.461 0.113 0.082 – 0.165 0

UWaveGesture._X – – – – - – 0.199

UWaveGesture._Y – – – – – – 0.283

UWaveGesture_Z – – – – – – 0.29

wafer 0.003 0.001 0.004 0.001 – 0.002 0.003

WordSynonyms – – – – 0.214 – 0.226

yoga 0.17 0.26 0.249 0.197 0.401 0.163 0.121

The results are split into two parts for readability. The first part is shown in Table 5, and part two includes
results for Bag of Patterns (BoP) (Lin et al. 2012), Logical Shapelets (LS) and Fast Shapelets (FS) (Ye
and Keogh 2009; Rakthanmanon and Keogh 2013), Shapelet Transform (ST) (Hills et al. 2013), Fusion
Methods for TSC (FUSION) (Buza 2011), and the Transformation-Based Ensemble for TSC (TE) (Bagnall
et al. 2012). The results of the Proportional Elastic Ensemble (PROP) are repeated for comparison. Dashes
indicate where results were not available, and the best result on each dataset across both tables is shown in
bold

there are in fact three Cricket files), hence we compare the elastic ensemble over 31 data
sets. The proportional ensemble is more accurate than both shapelet tree algorithms
on 26 of the 31 data sets, and worse on just 5. The difference is significant.

The results against the shapelet transform used in conjunction with a linear
SVM (Hills et al. 2013) are less conclusive. The elastic ensemble wins on 17 of
the 29 UCR data sets, ties on 3 and loses on 12. This difference is not significant.

Figure 11 shows the critical difference diagram for shapelets, DTWCV and the
elastic ensemble on the 29 common data sets. Firstly, it demonstrates that the elastic
ensemble is not significantly better than the shapelet transform, but is significantly
better than the other classifiers. Secondly, the diagram reinforces the conclusion drawn
in Hills et al. (2013) that the best way to use shapelets (at least in terms of accuracy)
is to transform rather than embed in a decision tree. Finally, Fig. 11 shows that none
of the shapelet algorithms are significantly better than DTW.

Rodriguez et al. (2005) evaluate their interval based SVM classifier on four UCR
data sets: CBF; Two Patterns; Trace; and GunPoint. The ensemble performed better
on three of these simple problems, with a very slightly worse accuracy on Trace.

Time Series Forests (TSF) (Deng et al. 2013) were evaluated on all 44 UCR data
sets. The ensemble is better on 29, worse on 15. The difference is significant.
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Fig. 11 The average ranks for
three shapelet algorithms,
DTWCV and Elastic Ensemble
on 29 UCR datasets. The critical
difference for α = 5 % is 1.1137
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The BoP approach presented in Lin et al. (2012) is evaluated on 19 UCR data. The
ensemble has significantly lower error than BoP. It wins on 15 data sets, is tied on 2
and is worse on 2 (FaceFour and Trace). The main support for the BoP algorithm is
that it is much faster than DTW, but it is clear that this speed comes at the cost of
accuracy.

The time series based on a bag-of-features representation (TSBF) described in Bay-
dogan et al. (2013) is evaluated on 44 UCR data sets. The ensemble outperforms TSBF
on 27 data sets and is worse on 17. The difference is significant.

The elastic ensemble is also significantly better than our previous ensemble
described (Bagnall et al. 2012), winning on 21 out of 25 common data sets, which is
a significant difference.

The fusion technique proposed in Buza (2011) was evaluated on 20 UCR data sets.
The elastic ensemble was more accurate on 14 of these. The result is significant.

Finally, a recently proposed adjustment to Euclidean distance that compensates for
the complexity of the series (Batista et al. 2011) was evaluated on 42 UCR data sets.
The elastic ensemble was more accurate on 35 of these. The difference is significant.

7 Conclusions

We have conducted extensive experiments on the largest set of time series classification
problems ever used in the literature (to the best of our knowledge) to demonstrate that,
firstly, there is no significant difference between recently proposed elastic measures
and secondly, that through ensembling we can produce a significantly more accurate
classifier than DTWCV or any other elastic distance measure.

There are numerous metrics to assess new algorithms for TSC. However, accuracy
is, in our opinion, the most important. We think that a new algorithm for TSC is only
of interest to the data mining community if it can significantly outperform DTWCV
and that to be of real interest it should outperform our proportional ensemble. We have
made our code and data sets freely available to allow an objective comparison (Lines
and Bagnall 2014).

We believe the proportional ensemble is the most accurate time series classifier yet
to be proposed in the data mining literature. There have been numerous alternative
classifiers for TSC that have published results on the UCR data [see, for example
(Rakthanmanon and Keogh 2013; Lin et al. 2012; Deng et al. 2013)]. We have com-
pared our results to all we can find in the literature, and the ensemble outperforms them
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all. There is not enough space to describe the analysis, but full details are available on
the accompanying website (Lines and Bagnall 2014).

Adding alternative measures and achieving a deeper understanding of the impor-
tance and interaction of the components of the ensemble may lead to improved per-
formance, and this is our next research objective.
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